74 research outputs found

    Designing for interaction

    Get PDF
    At present, the design of computer-supported group-based learning (CS)GBL) is often based on subjective decisions regarding tasks, pedagogy and technology, or concepts such as ‘cooperative learning’ and ‘collaborative learning’. Critical review reveals these concepts as insufficiently substantial to serve as a basis for (CS)GBL design. Furthermore, the relationship between outcome and group interaction is rarely specified a priori. Thus, there is a need for a more systematic approach to designing (CS)GBL that focuses on the elicitation of expected interaction processes. A framework for such a process-oriented methodology is proposed. Critical elements that affect interaction are identified: learning objectives, task-type, level of pre-structuring, group size and computer support. The proposed process-oriented method aims to stimulate designers to adopt a more systematic approach to (CS)GBL design according to the interaction expected, while paying attention to critical elements that affect interaction. This approach may bridge the gap between observed quality of interaction and learning outcomes and foster (CS)GBL design that focuses on the heart of the matter: interaction

    A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate

    Get PDF
    One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described

    Untangling the effects of overexploration and overexploitation on organizational performance: The moderating role of environmental dynamism

    Get PDF
    Because a firm's optimal knowledge search behavior is determined by unique firm and industry conditions, organizational performance should be contingent oil the degree to which a firm's actual level of knowledge search deviates from the optimal level. It is thus hypothesized that deviation from the optimal search, in the form of either overexploitation or overexploration, is detrimental to organizational performance. Furthermore, the negative effect of search deviation oil organizational performance varies with environmental dynamism: that is, overexploitation is expected to become more harmful. whereas overexploration becomes less so with all increase in environmental dynamism. The empirical analyses yield results consistent with these arguments. Implications for research and practice are correspondingly discussed

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Measurement of vector boson production cross sections and their ratios using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    Abstract available from publisher's website
    corecore