7 research outputs found

    A proposal for a study on treatment selection and lifestyle recommendations in chronic inflammatory diseases:A danish multidisciplinary collaboration on prognostic factors and personalised medicine

    Get PDF
    Chronic inflammatory diseases (CIDs), including Crohn’s disease and ulcerative colitis (inflammatory bowel diseases, IBD), rheumatoid arthritis, psoriasis, psoriatic arthritis, spondyloarthritides, hidradenitis suppurativa, and immune-mediated uveitis, are treated with biologics targeting the pro-inflammatory molecule tumour necrosis factor-α (TNF) (i.e., TNF inhibitors). Approximately one-third of the patients do not respond to the treatment. Genetics and lifestyle may affect the treatment results. The aims of this multidisciplinary collaboration are to identify (1) molecular signatures of prognostic value to help tailor treatment decisions to an individual likely to initiate TNF inhibitor therapy, followed by (2) lifestyle factors that support achievement of optimised treatment outcome. This report describes the establishment of a cohort that aims to obtain this information. Clinical data including lifestyle and treatment response and biological specimens (blood, faeces, urine, and, in IBD patients, intestinal biopsies) are sampled prior to and while on TNF inhibitor therapy. Both hypothesis-driven and data-driven analyses will be performed according to pre-specified protocols including pathway analyses resulting from candidate gene expression analyses and global approaches (e.g., metabolomics, metagenomics, proteomics). The final purpose is to improve the lives of patients suffering from CIDs, by providing tools facilitating treatment selection and dietary recommendations likely to improve the clinical outcome

    A proposal for a study on treatment selection and lifestyle recommendations in chronic inflammatory diseases: A Danish multidisciplinary collaboration on prognostic factors and personalised medicine

    Get PDF
    Chronic inflammatory diseases (CIDs), including Crohn's disease and ulcerative colitis (inflammatory bowel diseases, IBD), rheumatoid arthritis, psoriasis, psoriatic arthritis, spondyloarthritides, hidradenitis suppurativa, and immune-mediated uveitis, are treated with biologics targeting the pro-inflammatory molecule tumour necrosis factor-α (TNF) (i.e., TNF inhibitors). Approximately one-third of the patients do not respond to the treatment. Genetics and lifestyle may affect the treatment results. The aims of this multidisciplinary collaboration are to identify (1) molecular signatures of prognostic value to help tailor treatment decisions to an individual likely to initiate TNF inhibitor therapy, followed by (2) lifestyle factors that support achievement of optimised treatment outcome. This report describes the establishment of a cohort that aims to obtain this information. Clinical data including lifestyle and treatment response and biological specimens (blood, faeces, urine, and, in IBD patients, intestinal biopsies) are sampled prior to and while on TNF inhibitor therapy. Both hypothesis-driven and data-driven analyses will be performed according to pre-specified protocols including pathway analyses resulting from candidate gene expression analyses and global approaches (e.g., metabolomics, metagenomics, proteomics). The final purpose is to improve the lives of patients suffering from CIDs, by providing tools facilitating treatment selection and dietary recommendations likely to improve the clinical outcome.status: publishe

    Impact of red and processed meat and fibre intake on treatment outcomes among patients with chronic inflammatory diseases: protocol for a prospective cohort study of prognostic factors and personalised medicine

    No full text
    Chronic inflammatory diseases (CIDs) are frequently treated with biological medications, specifically tumour necrosis factor inhibitors (TNFi)). These medications inhibit the pro-inflammatory molecule TNF alpha, which has been strongly implicated in the aetiology of these diseases. Up to one-third of patients do not, however, respond to biologics, and lifestyle factors are assumed to affect treatment outcomes. Little is known about the effects of dietary lifestyle as a prognostic factor that may enable personalised medicine. The primary outcome of this multidisciplinary collaborative study will be to identify dietary lifestyle factors that support optimal treatment outcomes.status: publishe

    Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset

    No full text
    Objectives To find causal genes for rheumatoid arthritis (RA) and its seropositive (RF and/or ACPA positive) and seronegative subsets. Methods We performed a genome-wide association study (GWAS) of 31 313 RA cases (68% seropositive) and ~1 million controls from Northwestern Europe. We searched for causal genes outside the HLA-locus through effect on coding, mRNA expression in several tissues and/or levels of plasma proteins (SomaScan) and did network analysis (Qiagen). Results We found 25 sequence variants for RA overall, 33 for seropositive and 2 for seronegative RA, altogether 37 sequence variants at 34 non-HLA loci, of which 15 are novel. Genomic, transcriptomic and proteomic analysis of these yielded 25 causal genes in seropositive RA and additional two overall. Most encode proteins in the network of interferon-alpha/beta and IL-12/23 that signal through the JAK/STAT-pathway. Highlighting those with largest effect on seropositive RA, a rare missense variant in STAT4 (rs140675301-A) that is independent of reported non-coding STAT4-variants, increases the risk of seropositive RA 2.27-fold (p=2.1×10−9), more than the rs2476601-A missense variant in PTPN22 (OR=1.59, p=1.3×10−160). STAT4 rs140675301-A replaces hydrophilic glutamic acid with hydrophobic valine (Glu128Val) in a conserved, surface-exposed loop. A stop-mutation (rs76428106-C) in FLT3 increases seropositive RA risk (OR=1.35, p=6.6×10−11). Independent missense variants in TYK2 (rs34536443-C, rs12720356-C, rs35018800-A, latter two novel) associate with decreased risk of seropositive RA (ORs=0.63–0.87, p=10−9–10−27) and decreased plasma levels of interferon-alpha/beta receptor 1 that signals through TYK2/JAK1/STAT4. Conclusion Sequence variants pointing to causal genes in the JAK/STAT pathway have largest effect on seropositive RA, while associations with seronegative RA remain scarce

    Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset

    Get PDF
    Objectives To find causal genes for rheumatoid arthritis (RA) and its seropositive (RF and/or ACPA positive) and seronegative subsets. Methods We performed a genome-wide association study (GWAS) of 31 313 RA cases (68% seropositive) and similar to 1 million controls from Northwestern Europe. We searched for causal genes outside the HLA-locus through effect on coding, mRNA expression in several tissues and/or levels of plasma proteins (SomaScan) and did network analysis (Qiagen). Results We found 25 sequence variants for RA overall, 33 for seropositive and 2 for seronegative RA, altogether 37 sequence variants at 34 non-HLA loci, of which 15 are novel. Genomic, transcriptomic and proteomic analysis of these yielded 25 causal genes in seropositive RA and additional two overall. Most encode proteins in the network of interferon-alpha/beta and IL-12/23 that signal through the JAK/STAT-pathway. Highlighting those with largest effect on seropositive RA, a rare missense variant in STAT4 (rs140675301-A) that is independent of reported non-coding STAT4-variants, increases the risk of seropositive RA 2.27-fold (p=2.1x10(-9)), more than the rs2476601-A missense variant in PTPN22 (OR=1.59, p=1.3x10(-160)). STAT4 rs140675301-A replaces hydrophilic glutamic acid with hydrophobic valine (Glu128Val) in a conserved, surface-exposed loop. A stop-mutation (rs76428106-C) in FLT3 increases seropositive RA risk (OR=1.35, p=6.6x10(-11)). Independent missense variants in TYK2 (rs34536443-C, rs12720356-C, rs35018800-A, latter two novel) associate with decreased risk of seropositive RA (ORs=0.63-0.87, p=10(-9)-10(-27)) and decreased plasma levels of interferon-alpha/beta receptor 1 that signals through TYK2/JAK1/STAT4. Conclusion Sequence variants pointing to causal genes in the JAK/STAT pathway have largest effect on seropositive RA, while associations with seronegative RA remain scarce.Funding Agencies|NORDFORSK [90825]; Swedish Research Council [2018-02803]; Swedish innovation Agency (Vinnova); Innovationsfonden; The Research Council of Norway; Region Stockholm-Karolinska Institutet; Region Vasterbotten (ALF); Danish Rheumatism Association [R194-A6956, A1923, A3037, A3570]; Swedish Brain Foundation; Nils and Bibbi Jensens Foundation; Knut and Alice Wallenberg Foundation; Margaretha af Ugglas Foundation; South-Eastern Heath Region of Norway; Health Research Fund of Central Denmark Region; Region of Southern Denmark; A.P. Moller Foundation for the Advancement of Medical Science; Colitis-Crohn Foreningen; Novo Nordisk Foundation [NNF15OC0016932]; Aase og Ejnar Danielsens Fond; Beckett-Fonden; Augustinus Fonden; Knud and Edith Eriksens Mindefond; Laege Sofus Carl Emil Friis and Hustru Olga Doris Friis Legat; Psoriasis Forskningsfonden; University of Aarhus; Region of Southern Denmarks PhD Fund [12/7725]; Department of Rheumatology, Frederiksberg Hospital; Research Council of Norway [229624, 223273]; South East and Western Norway Health Authorities; ERC AdG project SELECTionPREDISPOSED; Stiftelsen Kristian Gerhard Jebsen; Trond Mohn Foundation; Novo Nordisk Foundation; University of Bergen</p
    corecore