952 research outputs found

    How emergency managers (mis?)interpret forecasts

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146849/1/disa12293.pd

    Creating Bell states and decoherence effects in quantum dots system

    Full text link
    We show how to improve the efficiency for preparing Bell states in coupled two quantum dots system. A measurement to the state of driven quantum laser field leads to wave function collapse. This results in highly efficiency preparation of Bell states. The effect of decoherence on the efficiency of generating Bell states is also discussed in this paper. The results show that the decoherence does not affect the relative weight of 00>|00> and 11>|11> in the output state, but the efficiency of finding Bell states.Comment: 4 pages, 2figures, corrected some typo

    Strangeness Enhancement in p-A Collisions: Consequences for the Interpretation of Strangeness Production in A-A Collisions

    Get PDF
    Published measurements of semi-inclusive Lambda production in p-Au collisions at the AGS are used to estimate the yields of singly strange hadrons in nucleus-nucleus A-A collisions. Results of a described extrapolation technique are shown and compared to measurements of K+ production in Si-Al, Si-Au, and Au-Au collisions at the AGS and net Lambda production in Su-Su, S-Ag, Pb-Pb, and inclusive p-A collisions at the SPS. The extrapolations can account for more than 75% of the measured strange particle yields in all of the studied systems except for very central Au-Au collisions at the AGS where RQMD comparisons suggest large re-scattering contributions.Comment: 9 pages, 4 figure

    Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED

    Get PDF
    The dynamics of the entanglement for coherent excitonic states in the system of two coupled large semiconductor quantum dots (R/aB1R/a_{B}\gg 1) mediated by a single-mode cavity field is investigated. Maximally entangled coherent excitonic states can be generated by cavity field initially prepared in odd coherent state. The entanglement of the excitonic coherent states between two dots reaches maximum when no photon is detected in the cavity. The effects of the zero-temperature environment on the entanglement of excitonic coherent state are also studied using the concurrence for two subsystems of the excitonsComment: 7 pages, 6 figure

    A review of the Dividend Discount Model: from deterministic to stochastic models

    Get PDF
    This chapter presents a review of the dividend discount models starting from the basic models (Williams 1938, Gordon and Shapiro 1956) to more recent and complex models (Ghezzi and Piccardi 2003, Barbu et al. 2017, D'Amico and De Blasis 2018) with a focus on the modelling of the dividend process rather than the discounting factor, that is assumed constant in most of the models. The Chapter starts with an introduction of the basic valuation model with some general aspects to consider when performing the computation. Then, Section 1.3 presents the Gordon growth model (Gordon 1962) with some of its extensions (Malkiel 1963, Fuller and Hsia 1984, Molodovsky et al. 1965, Brooks and Helms 1990, Barsky and De Long 1993), and reports some empirical evidence. Extended reviews of the Gordon stock valuation model and its extensions can be found in Kamstra (2003) and Damodaran (2012). In Section 1.4, the focus is directed to more recent advancements which make us of the Markov chain to model the dividend process (Hurley and Johnson 1994, Yao 1997, Hurley and Johnson 1998, Ghezzi and Piccardi 2003, Barbu et al. 2017, D'Amico and De Blasis 2018). The advantage of these models is the possibility to obtain a different valuation that depends on the state of the dividend series, allowing the model to be closer to reality. In addition, these models permit to obtain a measure of the risk of the single stock or a portfolio of stocks

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
    corecore