131 research outputs found

    Enterotoxin genes, enterotoxin production, and methicillin resistance in Staphylococcus aureus isolated from milk and dairy products in Central Italy

    Get PDF
    AbstractA total of 227 Staphylococcus aureus colonies, isolated from 54 samples of raw milk and dairy products of bovine, ovine, caprine and bubaline origin were tested for the presence of genes coding for staphylococcal enterotoxins (SEs/SEls) and for methicillin resistance. Ninety-three colonies, from 31 of the 54 samples (57.4%) and from 18 (69.2%) of the 26 farms of origin tested positive for SEs/SEls genes. Most isolates harboured more than one toxin gene and 15 different toxinotypes were recorded. The most frequent were “sec” gene alone (28.6%), “sea, sed, ser, selj” (20%), “seg, sei” and “seh” (8.6%). The 77 colonies harbouring “classical enterotoxins” genes (sea-sed) were further tested for enterotoxin production, which was assessed for 59.2% of the colonies. Three methicillin-resistant S. aureus (MRSA) isolates were detected in three different ovine milk/dairy product samples (1.3%). All isolates belonged to spa type t127, sequence type 1, clonal complex 1, SCCmec type IVa

    Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Get PDF
    <div><p>Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway <i>i</i>.<i>e</i>., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times <i>vs</i>. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.</p></div

    Methodological advances in imaging intravital axonal transport.

    Get PDF
    Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer's disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

    Get PDF

    Regulation of cytokine signaling through direct interaction between cytokine receptors and the ATG16L1 WD40 domain

    Get PDF
    ATG16L1, an autophagy mediator that specifies the site of LC3 lipidation, includes a C-terminal domain formed by 7 WD40-type repeats (WD40 domain, WDD), the function of which is unclear. Here we show that the WDD interacts with the intracellular domain of cytokine receptors to regulate their signaling output in response to ligand stimulation. Using a refined version of a previously described WDD-binding amino acid motif, here we show that this element is present in the intracellular domain of cytokine receptors. Two of these receptors, IL-10RB and IL-2Rγ, recognize the WDD through the motif and exhibit WDD-dependent LC3 lipidation activity. IL-10 promotes IL-10RB/ATG16L1 interaction through the WDD, and IL-10 signaling is suboptimal in cells lacking the WDD owing to delayed endocytosis and inefficient early trafficking of IL10/IL-10R complexes. Our data reveal WDD-dependent roles of ATG16L1 in the regulation of cytokine receptor trafficking and signaling, and provide a WDD-binding motif that might be used to identify additional WDD activators

    Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons.

    Get PDF
    An increasing number of studies show that the activation of the innate immune system and inflammatory mechanisms play an important role in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms and its activation occurs in response to pathogens or tissue injury via pattern-recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Intracellular pathways, linking immune and inflammatory response to ion channel expression and function, have been recently identified. Among ion channels, the transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes.In this review, we summarize current knowledge of interactions between immune cells and PRRs and ion channels of TRP families with PAMPs and DAMPs to provide new insights into the pathogenesis of inflammatory diseases. TRP channels have been found to interfere with innate immunity via both nuclear factor-kB and procaspase-1 activation to generate the mature caspase-1 that cleaves pro-interleukin-1ß cytokine into the mature interleukin-1ß.Sensory neurons are also adapted to recognize dangers by virtue of their sensitivity to intense mechanical, thermal and irritant chemical stimuli. As immune cells, they possess many of the same molecular recognition pathways for danger. Thus, they express PRRs including Toll-like receptors 3, 4, 7, and 9, and stimulation by Toll-like receptor ligands leads to induction of inward currents and sensitization in TRPs. In addition, the expression of inflammasomes in neurons and the involvement of TRPs in central nervous system diseases strongly support a role of TRPs in inflammasome-mediated neurodegenerative pathologies. This field is still at its beginning and further studies may be required.Overall, these studies highlight the therapeutic potential of targeting the inflammasomes in proinflammatory, autoinflammatory and metabolic disorders associated with undesirable activation of the inflammasome by using specific TRP antagonists, anti-human TRP monoclonal antibody or different molecules able to abrogate the TRP channel-mediated inflammatory signals

    Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons

    Get PDF

    AMPK in Pathogens

    Get PDF
    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host–pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.CIHR -Canadian Institutes of Health Researc

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

    Get PDF
    We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision
    corecore