19 research outputs found

    Water Balance Changes and Responses of Ecosystems and Society in the Berlin-Brandenburg Region – a Review

    Get PDF
    The climate change debate has increased the need for knowledge on both long- and short-term regional environmental changes. In general, these changes may often be a product of multiple causes, which complicates the separation of single driving forces. In this review we focus on current water budget changes in Germany’s capital region, Berlin-Brandenburg, over the last 30 years. Available studies from a variety of disciplines (e.g. hydrology, water engineering, landscape ecology, nature conservation) were analysed in order to (1) identify both local and regional hydrological changes, (2) reveal their potential causes, and (3) discuss responses of ecosystems and society. These studies show that the Berlin-Brandenburg region is widely characterised by decreasing groundwater recharge, leading to decreasing groundwater and lake levels as well as decreasing fluvial discharge. These trends result both from complex, regional human impacts (e.g. long-term effects of hydro-melioration and changes in forest composition) and more general climate warming. The observed and assumed (future) changes of the regional water balance have been creating, and will continue to create, multifaceted impacts on existing ecosystems and society (e.g. wetland drying, decrease of biodiversity, decrease of productivity of grasslands and forests, increasing conflicts of interests). Several efforts to respond to the regional water deficit problem have already been undertaken, comprising for instance land-use optimisation, wetland restoration measures and the reestablishment of mixed deciduous forests. In general, however, the reviewed regional material on this topic reveals that the number and complexity of empirical studies are still poor. Thus, for both the identification and the explanation of current water balance changes and their effects, as well as for development and implementation of adaptive strategies, further multidisciplinary research efforts at different scales, including interregional comparisons, are required. Furthermore, both the observation of hydrological changes and the evaluation of adaptive and mitigative responses require at least continuous or, even better, extended monitoring efforts

    Environmental Effects over the First 2 1/2 Rotation Periods of a Fertilised Poplar Short Rotation Coppice

    Get PDF
    A short rotation coppice (SRC) with poplar was established in a randomised fertilisation experiment on sandy loam soil in Potsdam (Northeast Germany). The main objective of this study was to assess if negative environmental effects as nitrogen leaching and greenhouse gas emissions are enhanced by mineral nitrogen (N) fertiliser applied to poplar at rates of 0, 50 and 75 kg N ha−1 year−1 and how these effects are influenced by tree age with increasing number of rotation periods and cycles of organic matter decomposition and tree growth after each harvesting event. Between 2008 and 2012, the leaching of nitrate (NO3 −) was monitored with self-integrating accumulators over 6-month periods and the emissions of the greenhouse gases (GHG) nitrous oxide (N2O) and carbon dioxide (CO2) were determined in closed gas chambers. During the first 4 years of the poplar SRC, most nitrogen was lost through NO3 − leaching from the main root zone; however, there was no significant relationship to the rate of N fertilisation. On average, 5.8 kg N ha−1 year−1 (13.0 kg CO2equ) was leached from the root zone. Nitrogen leaching rates decreased in the course of the 4-year study parallel to an increase of the fine root biomass and the degree of mycorrhization. In contrast to N leaching, the loss of nitrogen by N2O emissions from the soil was very low with an average of 0.61 kg N ha−1 year−1 (182 kg CO2equ) and were also not affected by N fertilisation over the whole study period. Real CO2 emissions from the poplar soil were two orders of magnitude higher ranging between 15,122 and 19,091 kg CO2 ha−1 year−1 and followed the rotation period with enhanced emission rates in the years of harvest. As key-factors for NO3 − leaching and N2O emissions, the time after planting and after harvest and the rotation period have been identified by a mixed effects model

    Late Quaternary evolution of rivers, lakes and peatlands in northeast Germany reflecting past climatic and human impact – an overview

    Get PDF
    Die Kenntnis der regionalen Paläohydrologie ist eine wesentliche Grundlage für das Verständnis aktueller Umweltfragen, wie zum Beispiel nach den Gründen von hydrologischen Veränderungen, dem Einfluss von Landnutzungsstrategien und der Wirksamkeit von Renaturierungsvorhaben in Feuchtgebieten. Auch die Interpretation von Modellierungsergebnissen zu den künftigen Einflüssen des Klima- und Landnutzungswandels auf das Gewässersystem kann durch die Einbeziehung (prä-) historischer Analogien verbessert werden. Für das glazial geprägte nordostdeutsche Tiefland wurde eine Übersicht der vorliegenden paläohydrologischen Befunde für den Zeitraum der letzten etwa 20.000 Jahre erarbeitet. Die Entwicklung der Flüsse wurde mit Blick auf die Tal-/Auengenese und das Ablagerungsmilieu, die Veränderung des Tal- und Gerinneverlaufs sowie den Paläoabfluss bzw. das Paläohochwasser betrachtet. Wesentliche genetische Unterschiede bestehen zwischen Alt- (Elster- und Saalekaltzeit) und Jungmoränengebieten (Weichselkaltzeit) sowie zwischen hoch und tief gelegenen Tälern. Letztere sind stark durch Wasserspiegelveränderungen in der Nord- und Ostsee beeinflusst worden. Die Entwicklung der Seen wurde hinsichtlich der Seebildung, die überwiegend eine Folge der spätpleistozänen bis frühholozänen Toteistieftau-Dynamik ist, und der Veränderungen im Ablagerungsmilieu analysiert. Weiterhin standen Seespiegelveränderungen im Fokus, wobei sich hoch variable lokale Befunde mit einigen Übereinstimmungen zeigten. Der Überblick zur Moorentwicklung konzentrierte sich auf hydrogenetische Moorentwicklungsphasen und auf die langfristige Entwicklung des Grundwasserspiegels. Enge Beziehungen zwischen der Entwicklung der Flüsse, Seen und Moore bestanden insbesondere im Spätholozän durch komplexe Vermoorungsprozesse in den großen Flusstälern. Bis in das Spätholozän wurde die regionale Hydrologie überwiegend durch klimatische, geomorphologische und nicht-anthropogene biologische Faktoren gesteuert. Seit dem Spätmittelalter wurde in der Region das Gewässernetz und der Wasserkreislauf im starken Maß durch anthropogene Interventionen beeinflusst (z.B. Aufstau von Flüssen und Seen, Bau von Kanälen und Deichen, Moorkultivierung). In den letzten etwa 50 Jahren haben dann sogar die kurzfristigen anthropogenen Eingriffe, z.B. in Form von Abflussregulierung, Hydromelioration und künstlicher Seebildung, die Wirksamkeit langfristiger klimatischer und geomorphologischer Prozesse übertroffen.researc

    Disproportionate single-species contribution to canopy-soil nutrient flux in an Amazonian rainforest

    Get PDF
    Rainfall, throughfall and stemflow were monitored on an event basis in an undisturbed open tropical rainforest with a large number of palm trees located in the southwestern Amazon basin of Brazil. Stemflow samples were collected from 24 trees with a diameter at breast height (DBH) > 5 cm, as well as eight young and four full-grown babassu palms (Attalea speciosa Mart.) for 5 weeks during the peak of the wet season. We calculated rainfall, throughfall and stemflow concentrations and fluxes of Na+, K+, Ca2+, Mg2+,, Cl-, SO42-, NO3- and H+ and stemflow volume-weighted mean concentrations and fluxes for three size classes of broadleaf trees and three size classes of palms. The concentrations of most solutes were higher in stemflow than in rainfall and increased with increasing tree and palm size. Concentration enrichments from rainfall to stemflow and throughfall were particularly high (81-fold) for NO3-. Stemflow fluxes of NO3- and H+ exceeded throughfall fluxes but stemflow fluxes of other solutes were less than throughfall fluxes. Stemflow solute fluxes to the forest soil were dominated by fluxes on babassu palms, which represented only 4% of total stem number and 10% of total basal area. For NO3-, stemflow contributed 51% of the total mass of nitrogen delivered to the forest floor (stemflow + throughfall) and represented more than a 2000-fold increase in NO3- flux compared what would have been delivered by rainfall alone on the equivalent area. Because these highly localized fluxes of both water and NO3- persist in time and space, they have the potential to affect patterns of soil moisture, microbial populations and other features of soil biogeochemistry conducive to the creation of hotspots for nitrogen leaching and denitrification, which could amount to an important fraction of total ecosystem fluxes. Because these hotspots occur over very small areas, they have likely gone undetected in previous studies and need to be considered as an important feature of the biogeochemistry of palm-rich tropical forest. (C) 2011 Elsevier B.V. All rights reserved.US National Science Foundation [DEB-0315656]NASA LBA [NCC5-285]FAPESP [03/13172-2]CNPq [420199/2005-5]PROBRALDAADCAPE

    Runoff sources and land cover change in the Amazon : an end-member mixing analysis from small watersheds

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 105 (2011): 7-18, doi:10.1007/s10533-011-9597-8.The flowpaths by which water moves from watersheds to streams has important consequences for the runoff dynamics and biogeochemistry of surface waters in the Amazon Basin. The clearing of Amazon forest to cattle pasture has the potential to change runoff sources to streams by shifting runoff to more surficial flow pathways. We applied end member mixing analysis (EMMA) to ten small watersheds throughout the Amazon in which solute composition of streamwater and groundwater, overland flow, soil solution, throughfall and rainwater were measured, largely as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia. We found a range in the extent to which streamwater samples fell within the mixing space determined by potential flowpath end members, suggesting that some water sources to streams were not sampled. The contribution of overland flow as a source of stream flow was greater in pasture watersheds than in forest watersheds of comparable size. Increases in overland flow contribution to pasture streams ranged in some cases from 0% in forest to 27 to 28% in pasture and were broadly consistent with results from hydrometric sampling of Amazon forest and pasture watersheds that indicate 17- to 18-fold increase in the overland flow contribution to stream flow in pastures. In forest, overland flow was an important contribution to stream flow (45 to 57%) in ephemeral streams where flows were dominated by stormflow. Overland flow contribution to stream flow decreased in importance with increasing watershed area, from 21 to 57% in forest and 60 to 89% in pasture watersheds 100 ha. Soil solution contributions to stream flow were similar across watershed area and groundwater inputs generally increased in proportion to decreases in overland flow. Application of EMMA across multiple watersheds indicated patterns across gradients of stream size and land cover that were consistent with patterns determined by detailed hydrometric sampling.This work was supported by National Science Foundation (DEB-0315656, DEB-0640661), the NASA LBA Program (NCC5-686, NCC5-69, NCC5-705, NNG066E88A) and by grants from Brazilian agencies FAPESP (03/13172-2) and CNPq (20199/2005-5)

    Influence of land-use change on near-surface hydrological processes: Undisturbed forest to pasture

    No full text
    Soil compaction that follows the clearing of tropical forest for cattle pasture is associated with lower soil hydraulic conductivity and increased frequency and volume of overland flow. We investigated the frequency of perched water tables, overland flow and stormflow in an Amazon forest and in an adjacent 25-year-old pasture cleared from the same forest. We compared the results with the frequencies of these phenomena estimated from comparisons of rainfall intensity and soil hydraulic conductivity. The frequency of perched water tables based on rainfall intensity and soil hydraulic conductivity was expected to double in pasture compared with forest. This corresponded closely with an approximate doubling of the frequency of stormflow and overland flow in pasture. In contrast, the stormflow volume in pasture increased 17-fold. This disproportional increase of stormflow resulted from overland flow generation over large areas of pasture, while overland flow generation in the forest was spatially limited and was observed only very near the stream channel. In both catchments, stormflow was generated by saturation excess because of perched water tables and near-surface groundwater levels. Stormflow was occasionally generated in the forest by rapid return flow from macropores, while slow return flow from a continuous perched water table was more common in the pasture. These results suggest that deforestation for pasture alters fundamental mechanisms of stormflow generation and may increase runoff volumes over wide regions of Amazonia. (C) 2009 Elsevier B.V. All rights reserved.US National Science Foundation (NSF)[DEB-0315656]NASA LBA[NCC5-285]FAPESP[03/13172-2]CNPq[420199/2005-5
    corecore