6 research outputs found

    The Contribution of the Parietal Lobes to Speaking and Writing

    Get PDF
    The left parietal lobe has been proposed as a major language area. However, parietal cortical function is more usually considered in terms of the control of actions, contributing both to attention and cross-modal integration of external and reafferent sensory cues. We used positron emission tomography to study normal subjects while they overtly generated narratives, both spoken and written. The purpose was to identify the parietal contribution to the modality-specific sensorimotor control of communication, separate from amodal linguistic and memory processes involved in generating a narrative. The majority of left and right parietal activity was associated with the execution of writing under visual and somatosensory control irrespective of whether the output was a narrative or repetitive reproduction of a single grapheme. In contrast, action-related parietal activity during speech production was confined to primary somatosensory cortex. The only parietal area with a pattern of activity compatible with an amodal central role in communication was the ventral part of the left angular gyrus (AG). The results of this study indicate that the cognitive processing of language within the parietal lobe is confined to the AG and that the major contribution of parietal cortex to communication is in the sensorimotor control of writing

    Right hemispheric structural connectivity and poststroke language recovery

    No full text
    Poststroke aphasia typically results from brain damage to the left-lateralized language network. The contribution of the right-lateralized homologues in aphasia recovery remains equivocal. In this longitudinal observational study, we specifically investigated the role of right hemisphere structural connectome in aphasia recovery. Twenty-two patients with aphasia after a left hemispheric stroke underwent comprehensive language assessment at the early subacute and chronic stages. A novel structural connectometry approach, using multi-shell diffusion-weighted MRI data collected at the early subacute stage, was used to evaluate the relationship between right hemisphere white matter connectome and language production and comprehension abilities at early subacute stage. Moreover, we evaluated the relationship between early subacute right hemisphere white matter connectome and longitudinal change in language production and comprehension abilities. All results were corrected for multiple comparisons. Connectometry analyses revealed negative associations between early subacute stage right hemisphere structural connectivity and language production, both cross-sectionally and longitudinally (pFDR  pFDR  < .0125). Interhemispheric connectivity was highly associated with comprehension scores. Our results shed light on the discordant interpretations of previous findings, by providing evidence that while some right hemisphere white matter pathways may make a maladaptive contribution to the recovery of language, other pathways support the recovery of language, especially comprehension abilities. </p

    Chronic aphasias after left-hemisphere resective surgery

    No full text
    Surgical resection of brain tumours is associated with an increased risk of aphasia. However, relatively little is known about outcomes in the chronic phase (i.e., >6 months). Using voxel-based lesion symptom mapping (VLSM) in 46 patients, we investigated whether chronic language impairments are related to the location of surgical resection, residual tumour characteristics (e.g., peri-resection treatment effects, progressive infiltration, oedema) or both. Approximately 72% of patients scored below the cut-off for aphasia. Action naming and spoken sentence comprehension deficits were associated with lesions in the left anterior temporal and inferior parietal lobes, respectively. Voxel-wise analyses revealed significant associations between ventral language pathways and action naming deficits. Reading impairments were also associated with increasing disconnection of cerebellar pathways. The results indicate chronic post-surgical aphasias reflect a combination of resected tissue and tumour infiltration of language-related white matter tracts, implicating progressive disconnection as the critical mechanism of impairment.</p

    Relationships between reading performance and regional spontaneous brain activity following surgical removal of primary left-hemisphere tumors: A resting-state fMRI study

    No full text
    Left-hemisphere intraparenchymal primary brain tumor patients are at risk of developing reading difficulties that may be stable, improve or deteriorate after surgery. Previous studies examining language organization in brain tumor patients have provided insights into neural plasticity supporting recovery. Only a single study, however, has examined the role of white matter tracts in preserving reading ability post-surgery and none have examined the functional reading network. The current study aimed to investigate the regional spontaneous brain activity associated with reading performance in a group of 36 adult patients 6-24 months following left-hemisphere tumor resection. Spontaneous brain activity was assessed using resting-state fMRI (rs-fMRI) regional homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF) metrics, which measure local functional connectivity and activity, respectively. ReHo in the left occipito-temporal and right superior parietal regions was negatively correlated with reading performance. fALFF in the putamen bilaterally and the left cerebellum was negatively correlated with reading performance, and positively correlated in the right superior parietal gyrus. These findings are broadly consistent with reading networks reported in healthy participants, indicating that reading ability following brain tumor surgery might not involve substantial functional re-organization.</p

    Examining dose frameworks to improve aphasia rehabilitation research

    No full text
    The effect of treatment dose on recovery of post-stroke aphasia is not well understood. Inconsistent conceptualization, measurement, and reporting of the multiple dimensions of dose hinders efforts to evaluate dose-response relations in aphasia rehabilitation research. We review the state of dose conceptualization in aphasia rehabilitation and compare the applicability of 3 existing dose frameworks to aphasia rehabilitation research—the Frequency, Intensity, Time, and Type (FITT) principle, the Cumulative Intervention Intensity (CII) framework, and the Multidimensional Dose Articulation Framework (MDAF). The MDAF specifies dose in greater detail than the CII framework and the FITT principle. On this basis, we selected the MDAF to be applied to 3 diverse examples of aphasia rehabilitation research. We next critically examined applicability of the MDAF to aphasia rehabilitation research and identified the next steps needed to systematically conceptualize, measure, and report the multiple dimensions of dose, which together can progress understanding of the effect of treatment dose on outcomes for people with aphasia after stroke. Further consideration is required to enable application of this framework to aphasia interventions that focus on participation, personal, and environmental interventions and to understand how the construct of episode difficulty applies across therapeutic activities used in aphasia interventions

    Task-induced brain activity in aphasic stroke patients: what is driving recovery?

    No full text
    The estimated prevalence of aphasia in the UK and the USA is 250 000 and 1 000 000, respectively. The commonest aetiology is stroke. The impairment may improve with behavioural therapy, and trials using cortical stimulation or pharmacotherapy are undergoing proof-of-principle investigation, but with mixed results. Aphasia is a heterogeneous syndrome, and the simple classifications according to the Broca-Wernicke-Lichtheim model inadequately describe the diverse communication difficulties with which patients may present. Greater knowledge of how intact neural networks promote recovery after aphasic stroke, either spontaneously or in response to interventions, will result in clearer hypotheses about how to improve the treatment of aphasia. Twenty-five years ago, a pioneering study on healthy participants heralded the introduction of functional neuroimaging to the study of mechanisms of recovery from aphasia. Over the ensuing decades, such studies have been interpreted as supporting one of three hypotheses, which are not mutually exclusive. The first two predate the introduction of functional neuroimaging: that recovery is the consequence of the reconstitution of domain-specific language systems in tissue around the lesion (the ‘perilesional’ hypothesis), or by homotopic cortex in the contralateral hemisphere (the ‘laterality-shift’ hypothesis). The third is that loss of transcallosal inhibition to contralateral homotopic cortex hinders recovery (the ‘disinhibition’ hypothesis). These different hypotheses at times give conflicting views about rehabilitative intervention; for example, should one attempt to activate or inhibit a contralateral homotopic region with cortical stimulation techniques to promote recovery? This review proposes that although the functional imaging data are statistically valid in most cases, their interpretation has often favoured one explanation while ignoring plausible alternatives. In our view, this is particularly evident when recovery is attributed to activity in ‘language networks’ occupying sites not observed in healthy participants. In this review we will argue that much of the distribution of what has often been interpreted as language-specific activity, particularly in midline and contralateral cortical regions, is an upregulation of activity in intact domain-general systems for cognitive control and attention, responding in a task-dependent manner to the increased ‘effort’ when damaged downstream domain-specific language networks are impaired. We further propose that it is an inability fully to activate these systems that may result in sub optimal recovery in some patients. Interpretation of the data in terms of activity in domain-general networks affords insights into novel approaches to rehabilitation
    corecore