6,167 research outputs found

    On the performance of densified DVB-H single frequency networks

    Get PDF
    The broadcasting of TV programmes to mobile phones can be enabled by the newly developed technology called Digital Video Broadcasting-Handheld (DVB-H). Because of the scarcity and cost of frequency resources, frequency reuse needs to be considered when rolling out DVB-H networks. By simulcasting the same content from several transmitters, a Single Frequency Network (SFN) can provide good coverage and good frequency efficiency. In this paper, the performance of densified DVB-H SFN networks is analysed in terms of the coverage probability under different coverage requirements with and without frequency reuse. A dichotomy searching approach is used to determine the optimal cell radius for a cell in a densified DVB-H SFN for a given network topology. Based on the optimal cell radius map and a SFN gain map generated from the simulation results, guidelines are proposed on how to avoid the potential pitfalls in configuring the parameters of a densified DVB-H SFN network and optimise its parameters in terms of minimising the cost of the network for a range of predefined network parameters

    OFDM over IEEE 802.11b hardware for telemedical applications

    Get PDF
    Using a wireless Local Area Network (WLAN) to transmit live high-quality video suitable for a telemedical application presents many challenges, including ensuring sufficient Quality of Service (QoS) for the end-user to be able to make an accurate diagnosis. One of the many problems that exist when developing such a system is the multipath effect caused by the reflections of the transmitted signals on various surfaces including walls, floors, furniture and people. This degrades the signal quality and reduces the amount of available bandwidth and, thus, the quality of the image. Presently, most of Europe is using the IEEE 802.11b hardware for such applications. As an alternative to the existing modulation of 802.11b, Orthogonal Frequency Division Multiplexing (OFDM) is investigated, especially for use inside hospitals. The advantages of using this modulation over IEEE 802.11b hardware for a telemedicine application are examined by means of simulation using three different simulation packages

    Stochastic user behaviour modelling and network simulation for resource management in cooperation with mobile telecommunications and broadcast networks

    Get PDF
    The latest generations of telecommunications networks have been designed to deliver higher data rates than widely used second generation telecommunications networks, providing flexible communication capabilities that can deliver high quality video images. However, these new generations of telecommunications networks are interference limited, impairing their performance in cases of heavy traffic and high usage. This limits the services offered by a telecommunications network operator to those that the operator is confident their network can meet the demand for. One way to lift this constraint would be for the mobile telecommunications network operator to obtain the cooperation of a broadcast network operator so that during periods when the demand for the service is too high for the telecommunications network to meet, the service can be transferred to the broadcast network. In the United Kingdom the most recent telecommunications networks on the market are third generation UMTS networks while the terrestrial digital broadcast networks are DVB-T networks. This paper proposes a way for UMTS network operators to forecast the traffic associated with high demand services intended to be deployed on the UMTS network and when demand requires to transfer it to a cooperating DVB-T network. The paper aims to justify to UMTS network operators the use of a DVB-T network as a support for a UMTS network by clearly showing how using a DVB-T network to support it can increase the revenue generated by their network

    A picogram and nanometer scale photonic crystal opto-mechanical cavity

    Get PDF
    We describe the design, fabrication, and measurement of a cavity opto-mechanical system consisting of two nanobeams of silicon nitride in the near-field of each other, forming a so-called "zipper" cavity. A photonic crystal patterning is applied to the nanobeams to localize optical and mechanical energy to the same cubic-micron-scale volume. The picrogram-scale mass of the structure, along with the strong per-photon optical gradient force, results in a giant optical spring effect. In addition, a novel damping regime is explored in which the small heat capacity of the zipper cavity results in blue-detuned opto-mechanical damping.Comment: 15 pages, 4 figure

    Prevalence and correlates of physical activity across kidney disease stages: an observational multicentre study

    Get PDF
    Background: People with chronic kidney disease (CKD) report high levels of physical inactivity, a major modifiable risk factor for morbidity and mortality. Understanding the biological, psychosocial and demographic causes of physical activity behaviour is essential for the development and improvement of potential health interventions and promotional initiatives. This study investigated the prevalence of physical inactivity and determined individual correlates of this behaviour in a large sample of patients across the spectrum of kidney disease. / Methods: A total of 5656 people across all stages of CKD (1–2, 3, 4–5, haemodialysis, peritoneal dialysis and renal transplant recipients) were recruited from 17 sites in England from July 2012 to October 2018. Physical activity was evaluated using the General Practice Physical Activity Questionnaire. Self-reported cardiorespiratory fitness, self-efficacy and stage of change were also assessed. Binominal generalized linear mutually adjusted models were conducted to explore the associations between physical activity and correlate variables. This cross-sectional observational multi-centre study was registered retrospectively as ISRCTN87066351 (October 2015). / Results: The prevalence of physical activity (6–34%) was low and worsened with disease progression. Being older, female and having a greater number of comorbidities were associated with greater odds of being physically inactive. Higher haemoglobin, cardiorespiratory fitness and self-efficacy levels were associated with increased odds of being active. Neither ethnicity nor smoking history had any effect on physical activity. / Conclusions: Levels of physical inactivity are high across all stages of CKD. The identification of stage-specific correlates of physical activity may help to prioritize factors in target groups of kidney patients and improve the development and improvement of public health interventions

    Activin A expression regulates multipotency of mesenchymal progenitor cells

    Get PDF
    INTRODUCTION. Bone marrow (BM) stroma currently represents the most common and investigated source of mesenchymal progenitor cells (MPCs); however, comparable adult progenitor or stem cells have also been isolated from a wide variety of tissues. This study aims to assess the functional similarities of MPCs from different tissues and to identify specific factor(s) related to their multipotency. METHODS. For this purpose, we directly compared MPCs isolated from different adult tissues, including bone marrow, tonsil, muscle, and dental pulp. We first examined and compared proliferation rates, immunomodulatory properties, and multidifferentiation potential of these MPCs in vitro. Next, we specifically evaluated activin A expression profile and activin A:follistatin ratio in MPCs from the four sources. RESULTS. The multidifferentiation potential of the MPCs is correlated with activin A level and/or the activin A:follistatin ratio. Interestingly, by siRNA-mediated activin A knockdown, activin A was shown to be required for the chondrogenic and osteogenic differentiation of MPCs. These findings strongly suggest that activin A has a pivotal differentiation-related role in the early stages of chondrogenesis and osteogenesis while inhibiting adipogenesis of MPCs. CONCLUSIONS. This comparative analysis of MPCs from different tissue sources also identifies bone marrow-derived MPCs as the most potent MPCs in terms of multilineage differentiation and immunosuppression, two key requirements in cell-based regenerative medicine. In addition, this study implicates the significance of activin A as a functional marker of MPC identity.National Institute of Arthritis, and Musculoskeletal and Skin Diseases; National Institutes of Health (ZO1 AR 41131, 01 DE019156-01

    PTEN controls glandular morphogenesis through a juxtamembrane β-Arrestin1/ARHGAP21 scaffolding complex

    Get PDF
    PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signalling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42-dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN-deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42

    Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating

    Get PDF
    Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies addressed the general operation of graphene-based photo-thermoelectric devices, and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster time scale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 femtoseconds. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 femtosecond laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity between 500 and 1500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.Comment: 6 pages, 4 figure
    corecore