748 research outputs found

    Evaluation of diffuse mismatch model for phonon scattering at disordered interfaces

    Full text link
    Diffuse phonon scattering strongly affects the phonon transport through a disordered interface. The often-used diffuse mismatch model assumes that phonons lose memory of their origin after being scattered by the interface. Using mode-resolved atomic Green's function simulation, we demonstrate that diffuse phonon scattering by a single disordered interface cannot make a phonon lose its memory and thus the applicability of diffusive mismatch model is limited. An analytical expression for diffuse scattering probability based on the continuum approximation is also derived and shown to work reasonably well at low frequencies.Comment: 13 pages, 7 figure

    Autoscaling Method for Docker Swarm Towards Bursty Workload

    Get PDF
    The autoscaling mechanism of cloud computing can automatically adjust computing resources according to user needs, improve quality of service (QoS) and avoid over-provision. However, the traditional autoscaling methods suffer from oscillation and degradation of QoS when dealing with burstiness. Therefore, the autoscaling algorithm should consider the effect of bursty workloads. In this paper, we propose a novel AmRP (an autoscaling method that combines reactive and proactive mechanisms) that uses proactive scaling to launch some containers in advance, and then the reactive module performs vertical scaling based on existing containers to increase resources rapidly. Our method also integrates burst detection to alleviate the oscillation of the scaling algorithm and improve the QoS. Finally, we evaluated our approach with state-of-the-art baseline scaling methods under different workloads in a Docker Swarm cluster. Compared with the baseline methods, the experimental results show that AmRP has fewer SLA violations when dealing with bursty workloads, and its resource cost is also lower

    Ab initio study of electron mean free paths and thermoelectric properties of lead telluride

    Get PDF
    Last few years have witnessed significant enhancement of thermoelectric figure of merit of lead telluride (PbTe) via nanostructuring. Despite the experimental progress, current understanding of the electron transport in PbTe is based on either band structure calculation using first principles with constant relaxation time approximation or empirical models, both relying on adjustable parameters obtained by fitting experimental data. Here, we report parameter-free first-principles calculation of electron and phonon transport properties of PbTe, including mode-by-mode electron-phonon scattering analysis, leading to detailed information on electron mean free paths and the contributions of electrons and phonons with different mean free paths to thermoelectric transport properties in PbTe. Such information will help to rationalize the use and optimization of nanostructures to achieve high thermoelectric figure of merit

    Ab initio study of electron transport in lead telluride

    Get PDF
    Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 91-97).Last few years have witnessed significant enhancement of thermoelectric figure of merit of lead telluride (PbTe) via nanostructures. Despite the experimental progress, current understanding of the electron transport in PbTe is based on either band structure simulated using first-principles in combination with constant relaxation time approximation or empirical models, both requiring adjustable parameters obtained by fitting experimental data. This thesis aims to compute thermoelectric properties of PbTe all from first-principles. We start by discussing the formalism based on Boltzmann transport equation to calculate the electron transport properties in PbTe using first principles and identify the importance to calculate electron-phonon interaction accurately. We then discuss the challenges in studying electron-phonon interaction in semiconductors using first-principles and introduce electron-phonon Wannier interpolation which allows us to calculate the strength of electron-phonon coupling on a very fine mesh. In polar materials like PbTe, the Fröhlich interaction due to long-range dipole field of longitudinal optical phonons contributes to the electron-phonon coupling as well. As the long-range nature of the dipole field makes the standard Wannier interpolation fail, we have discussed the detailed procedures for correction. Next, we study the screening effect of free carriers on electron transport by modulating the polar scattering. These considerations enabled us to report parameter-free first-principles calculation of electron and phonon transport in PbTe, including mode-by-mode electron-phonon scattering, leading to detailed information on electron mean free paths and the cumulative contributions by electrons and phonons with different mean free paths to thermoelectric transport properties in PbTe. Such information will help to rationalize the use and optimization of nanostructures to achieve high thermoelectric figure of merit.by Qichen Song.S.M

    Dirac-Electrons-Mediated Magnetic Proximity Effect in Topological Insulator / Magnetic Insulator Heterostructures

    Full text link
    The possible realization of dissipationless chiral edge current in a topological insulator / magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. Here we report a polarized neutron reflectometry observation of Dirac electrons mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi0.2_{0.2}Sb0.8_{0.8})2_{2}Te3_{3} / magnetic insulator EuS heterostructure. We are able to maximize the proximity induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the charge neutral point. A phenomenological model based on diamagnetic screening is developed to explain the suppressed proximity induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator hetero-interface for low-power spintronic applications.Comment: 5 pages main text with 4 figures; 2 pages supplemental materials; suggestions and discussions are welcome

    Tailoring Superconductivity with Quantum Dislocations

    Get PDF
    Despite the established knowledge that crystal dislocations can affect a material’s superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material’s superconducting transition temperature (T[subscript c]) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T[subscript c]. These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T[subscript c] reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T[subscript c]. This provides a new pathway for engineering a material’s superconducting properties by using dislocations as an additional degree of freedom. Keywords: Dislocations; disordered superconductor; effective field theory; electron-dislocation interactionUnited States. Department of Energy. Office of Basic Energy Sciences (Grant DE-SC0001299)United States. Department of Energy. Office of Basic Energy Sciences (Grant DE-FG02-09ER46577)United States. Defense Advanced Research Projects Agency (Award HR0011-16-2-0041

    RING finger 138 deregulation distorts NF-кB signaling and facilities colitis switch to aggressive malignancy

    Get PDF
    Prolonged activation of nuclear factor (NF)-кB signaling significantly contributes to the development of colorectal cancer (CRC). New therapeutic opportunities are emerging from targeting this distorted cell signaling transduction. Here, we discovered the critical role of RING finger 138 (RNF138) in CRC tumorigenesis through regulating the NF-кB signaling, which is independent of its Ubiquitin-E3 ligase activity involved in DNA damage response. RNF138(−/−) mice were hyper-susceptible to the switch from colitis to aggressive malignancy, which coincided with sustained aberrant NF-кB signaling in the colonic cells. Furthermore, RNF138 suppresses the activation of NF-кB signaling pathway through preventing the translocation of NIK and IKK-Beta Binding Protein (NIBP) to the cytoplasm, which requires the ubiquitin interaction motif (UIM) domain. More importantly, we uncovered a significant correlation between poor prognosis and the downregulation of RNF138 associated with reinforced NF-кB signaling in clinical settings, raising the possibility of RNF138 dysregulation as an indicator for the therapeutic intervention targeting NF-кB signaling. Using the xenograft models built upon either RNF138-dificient CRC cells or the cells derived from the RNF138-dysregulated CRC patients, we demonstrated that the inhibition of NF-кB signaling effectively hampered tumor growth. Overall, our work defined the pathogenic role of aberrant NF-кB signaling due to RNF138 downregulation in the cascade events from the colitis switch to colonic neoplastic transformation and progression, and also highlights the possibility of targeting the NF-кB signaling in treating specific subtypes of CRC indicated by RNF138-ablation

    EUD-MARS: End-User Development of Model-Driven Adaptive Robotics Software Systems

    Get PDF
    Empowering end-users to program robots is becoming more significant. Introducing software engineering principles into end-user programming could improve the quality of the developed software applications. For example, model-driven development improves technology independence and adaptive systems act upon changes in their context of use. However, end-users need to apply such principles in a non-daunting manner and without incurring a steep learning curve. This paper presents EUD-MARS that aims to provide end-users with a simple approach for developing model-driven adaptive robotics software. End-users include people like hobbyists and students who are not professional programmers but are interested in programming robots. EUD-MARS supports robots like hobby drones and educational humanoids that are available for end-users. It offers a tool for software developers and another one for end-users. We evaluated EUD-MARS from three perspectives. First, we used EUD-MARS to program different types of robots and assessed its visual programming language against existing design principles. Second, we asked software developers to use EUD-MARS to configure robots and obtained their feedback on strengths and points for improvement. Third, we observed how end-users explain and develop EUD-MARS programs, and obtained their feedback mainly on understandability, ease of programming, and desirability. These evaluations yielded positive indications of EUD-MARS
    corecore