231 research outputs found

    Intranasal immunization with plasmid DNA encoding spike protein of SARS-coronavirus/polyethylenimine nanoparticles elicits antigen-specific humoral and cellular immune responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunization with the spike protein (S) of severe acute respiratory syndrome (SARS)-coronavirus (CoV) in mice is known to produce neutralizing antibodies and to prevent the infection caused by SARS-CoV. Polyethylenimine 25K (PEI) is a cationic polymer which effectively delivers the plasmid DNA.</p> <p>Results</p> <p>In the present study, the immune responses of BALB/c mice immunized via intranasal (i.n.) route with SARS DNA vaccine (pci-S) in a PEI/pci-S complex form have been examined. The size of the PEI/pci-S nanoparticles appeared to be around 194.7 ± 99.3 nm, and the expression of the S mRNA and protein was confirmed <it>in vitro</it>. The mice immunized with i.n. PEI/pci-S nanoparticles produced significantly (<it>P </it>< 0.05) higher S-specific IgG1 in the sera and mucosal secretory IgA in the lung wash than those in mice treated with pci-S alone. Compared to those in mice challenged with pci-S alone, the number of B220<sup>+ </sup>cells found in PEI/pci-S vaccinated mice was elevated. Co-stimulatory molecules (CD80 and CD86) and class II major histocompatibility complex molecules (I-A<sup>d</sup>) were increased on CD11c<sup>+ </sup>dendritic cells in cervical lymph node from the mice after PEI/pci-S vaccination. The percentage of IFN-γ-, TNF-α- and IL-2-producing cells were higher in PEI/pci-S vaccinated mice than in control mice.</p> <p>Conclusion</p> <p>These results showed that intranasal immunization with PEI/pci-S nanoparticles induce antigen specific humoral and cellular immune responses.</p

    Initial Biopsy Outcome Prediction in Korean Patients-Comparison of a Noble Web-based Korean Prostate Cancer Risk Calculator versus Prostate-specific Antigen Testing

    Get PDF
    We developed and validated a novel Korean prostate cancer risk calculator (KPCRC) for predicting the probability of a positive initial prostate biopsy in a Korean population. Data were collected from 602 Koreans who underwent initial prostate biopsies due to an increased level of prostate-specific antigen (PSA), a palpable nodule upon digital rectal examination (DRE), or a hypoechoic lesion upon transrectal ultrasound (TRUS). The clinical and laboratory variables were analyzed by simple and multiple logistic regression analysis. The area under the receiver operating characteristic curve (AUC) was computed to compare its performance to PSA testing alone. Prostate cancer was detected in 172 (28.6%) men. Independent predictors included age, DRE findings, PSA level, and prostate transitional zone volume. We developed the KPCRC using these variables. The AUC for the selected model was 0.91, and that of PSA testing alone was 0.83 (P < 0.001). The AUC for the selected model with an additional dataset was 0.79, and that of PSA testing alone was 0.73 (P = 0.004). The calculator is available on the website: http://pcrc.korea.ac.kr. The KPCRC improved the performance of PSA testing alone in predicting the risk of prostate cancer in a Korean population. This calculator would be a practical tool for physicians and patients

    Photoresponse of polyaniline-functionalized graphene quantum dots

    Get PDF
    Polyaniline-functionalized graphene quantum dots (PANI-GQD) and pristine graphene quantum dots (GQDs) were utilized for optoelectronic devices. The PANI-GQD based photodetector exhibited higher responsivity which is about an order of magnitude at 405 nm and 7 folds at 532 nm as compared to GQD-based photodetectors. The improved photoresponse is attributed to the enhanced interconnection of GQD by island-like polymer matrices, which facilitate carrier transport within the polymer matrices. The optically tunable current–voltage (I–V) hysteresis of PANI-GQD was also demonstrated. The hysteresis magnifies progressively with light intensity at a scan range of ±1 V. Both GQD and PANI-GQD devices change from positive to negative photocurrent when the bias reaches 4 V. Photogenerated carriers are excited to the trapping states in GQDs with increased bias. The trapped charges interact with charges injected from the electrodes which results in a net decrease of free charge carriers and a negative photocurrent. The photocurrent switching phenomenon in GQD and PANI-GQD devices may open up novel applications in optoelectronics

    Clinical outcomes of pneumococcal pneumonia caused by antibiotic-resistant strains in Asian countries: a study by the Asian network for surveillance of resistant pathogens

    Get PDF
    To evaluate the clinical outcomes of pneumococcal pneumonia caused by antibiotic-resistant strains in Asian countries, we performed a prospective observational study of 233 cases of adult pneumococcal pneumonia in 9 Asian countries from January 2000 to June 2001. Among 233 isolates, 128 (55%) were not susceptible to penicillin (25.3% were intermediately susceptible, and 29.6% were resistant). Clinical severity of pneumococcal pneumonia was not significantly different between antibiotic-resistant and antibiotic-susceptible groups. Mortality rates among patients with pneumococcal pneumonia caused by penicillin-, cephalosporin-, or macrolide-resistant strains were not higher than those with antibiotic-susceptible pneumococcal pneumonia. Bacteremia and mechanical ventilation were significant risk factors for death, but any kind of antibiotic resistance was not associated with increased mortality due to pneumococcal pneumonia. Outcome of pneumococcal pneumonia was not significantly affected by drug resistance, and current antimicrobial regimens are mostly effective in the treatment of pneumococcal pneumonia, despite the widespread emergence of in vitro resistance

    Sublingual Immunization with M2-Based Vaccine Induces Broad Protective Immunity against Influenza

    Get PDF
    The ectodomain of matrix protein 2 (M2e) of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs) have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n.) route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l.) route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored.A recombinant M2 protein with three tandem copies of the M2e (3M2eC) was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs.The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections

    Endothelial Nitric Oxide Gene T-786C Polymorphism and Subarachnoid Hemorrhage in Korean Population

    Get PDF
    We aimed to elucidate whether the eNOS T-786C mutant allele is implicated in subarachnoid hemorrhage (SAH) susceptibility or vasospasm after SAH, and whether the mutant allele is differentially expressed in those with small and large ruptured aneurysms in Korean population. 136 consecutive patients diagnosed with aneurismal SAH and 113 controls were recruited. Polymerase chain reaction and direct sequencing of both strands were performed to determine genotypes with respect to the eNOS T-786C mutation. No significant difference was found between cases and controls with respect to the distributions of the two eNOS T-786C single nucleotide polymorphism (SNP) genotypes. No significant differences in the distributions of the eNOS T-786C SNP genotypes were found with regard to the sizes of ruptured aneurysms or the occurrence of vasospasm after SAH. Multiple logistic regression analysis after controlling for age and sex showed the eNOS T-786C SNP T/C genotype was independently associated with an unfavorable outcome (GOS grade 3-5) of SAH (Exp (β)=4.27, 95% CI 1.131-16.108, p=0.032). In conclusion, the eNOS T-786C mutation was not found to be associated with either a susceptibility to SAH or vasospasm after SAH, or with aneurysm size in Korean population. The eNOS T-786C SNP T/C genotype could be used as a prognostic marker in individuals with SAH

    Calcium Homeostasis in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    Get PDF
    Rationale: Cardiomyocytes generated from human induced pluripotent stem cells (hiPSCs) are suggested as the most promising candidate to replenish cardiomyocyte loss in regenerative medicine. Little is known about their calcium homeostasis, the key process underlying excitation-contraction coupling. Objective: We investigated the calcium handling properties of hiPSC-derived cardiomyocytes and compared with those from human embryonic stem cells (hESCs). Methods and Results: We differentiated cardiomyocytes from hiPSCs (IMR90 and KS1) and hESCs (H7 and HES3) with established protocols. Beating outgrowths from embryoid bodies were typically observed 2 weeks after induction. Cells in these outgrowths were stained positively for tropomyosin and sarcomeric alpha-actinin. Reverse-transcription polymerase chain reaction studies demonstrated the expressions of cardiac-specific markers in both hiPSC- and hESC-derived cardiomyocytes. Calcium handling properties of 20-day-old hiPSC- and hESC-derived cardiomyocytes were investigated using fluorescence confocal microscopy. Compared with hESC-derived cardiomyocytes, spontaneous calcium transients from both lines of hiPSC-derived cardiomyocytes were of significantly smaller amplitude and with slower maximal upstroke velocity. Better caffeine-induced calcium handling kinetics in hESC-CMs indicates a higher sacroplasmic recticulum calcium store. Furthermore, in contrast with hESC-derived cardiomyocytes, ryanodine did not reduce the amplitudes, maximal upstroke and decay velocity of calcium transients of hiPSC-derived cardiomyocytes. In addition, spatial inhomogeneity in temporal properties of calcium transients across the width of cardiomyocytes was more pronounced in hiPSC-derived cardiomyocytes than their hESC counterpart as revealed line-scan calcium imaging. Expressions of the key calcium-handling proteins including ryanodine recptor-2 (RyR2), sacroplasmic recticulum calcium-ATPase (SERCA), junction (Jun) and triadin (TRDN), were significantly lower in hiPSC than in hESCs. Conclusions: The results indicate the calcium handling properties of hiPSC-derived cardiomyocytes are relatively immature to hESC counterparts. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201
    corecore