2,341 research outputs found

    Additively manufacturable micro-mechanical logic gates.

    Get PDF
    Early examples of computers were almost exclusively based on mechanical devices. Although electronic computers became dominant in the past 60 years, recent advancements in three-dimensional micro-additive manufacturing technology provide new fabrication techniques for complex microstructures which have rekindled research interest in mechanical computations. Here we propose a new digital mechanical computation approach based on additively-manufacturable micro-mechanical logic gates. The proposed mechanical logic gates (i.e., NOT, AND, OR, NAND, and NOR gates) utilize multi-stable micro-flexures that buckle to perform Boolean computations based purely on mechanical forces and displacements with no electronic components. A key benefit of the proposed approach is that such systems can be additively fabricated as embedded parts of microarchitected metamaterials that are capable of interacting mechanically with their surrounding environment while processing and storing digital data internally without requiring electric power

    Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast

    Get PDF
    Autophagy is a conserved degradative pathway that is induced in response to various stress and developmental conditions in eukaryotic cells. It allows the elimination of cytosolic proteins and organelles in the lysosome/vacuole. In the yeast Saccharomyces cerevisiae, the integral membrane protein Atg9 (autophagy-related protein 9) cycles between mitochondria and the preautophagosomal structure (PAS), the nucleating site for formation of the sequestering vesicle, suggesting a role in supplying membrane for vesicle formation and/or expansion during autophagy. To better understand the mechanisms involved in Atg9 cycling, we performed a yeast two-hybrid–based screen and identified a peripheral membrane protein, Atg11, that interacts with Atg9. We show that Atg11 governs Atg9 cycling through the PAS during specific autophagy. We also demonstrate that the integrity of the actin cytoskeleton is essential for correct targeting of Atg11 to the PAS. We propose that a pool of Atg11 mediates the anterograde transport of Atg9 to the PAS that is dependent on the actin cytoskeleton during yeast vegetative growth

    Permissive Transcriptional Activity at the Centromere through Pockets of DNA Hypomethylation

    Get PDF
    DNA methylation is a hallmark of transcriptional silencing, yet transcription has been reported at the centromere. To address this apparent paradox, we employed a fully sequence-defined ectopic human centromere (or neocentromere) to investigate the relationship between DNA methylation and transcription. We used sodium bisulfite PCR and sequencing to determine the methylation status of 2,041 CpG dinucleotides distributed across a 6.76-Mbp chromosomal region containing a neocentromere. These CpG dinucleotides were associated with conventional and nonconventional CpG islands. We found an overall hypermethylation of the neocentric DNA at nonconventional CpG islands that we designated as CpG islets and CpG orphans. The observed hypermethylation was consistent with the presence of a presumed transcriptionally silent chromatin state at the neocentromere. Within this neocentric chromatin, specific sites of active transcription and the centromeric chromatin boundary are defined by DNA hypomethylation. Our data demonstrate, for the first time to our knowledge, a correlation between DNA methylation and centromere formation in mammals, and that transcription and “chromatin-boundary activity” are permissible at the centromere through the selective hypomethylation of pockets of sequences without compromising the overall silent chromatin state and function of the centromere

    Bactericidal activities and post-antibiotic effects of ofloxacin and ceftriaxone against drug-resistant Salmonella enterica serovar Typhi.

    Get PDF
    BACKGROUND: The clinical response to ceftriaxone in patients with typhoid fever is significantly slower than with ofloxacin, despite infection with Salmonella enterica serovar Typhi (S. Typhi) isolates with similar susceptibilities (MIC 0.03-0.12 mg/L). The response to ofloxacin is slower if the isolate has intermediate susceptibility (MIC 0.25-1.0 mg/L). OBJECTIVES: To determine the bactericidal activity and post-antibiotic effect (PAE) of ceftriaxone and ofloxacin against S. Typhi. METHODS: The mean time to reach a 99.9% reduction in log10 count (bactericidal activity) and PAE of ceftriaxone and ofloxacin were determined for 18 clinical isolates of S. Typhi in time-kill experiments (MIC range for ofloxacin 0.06-1.0 mg/L and for ceftriaxone 0.03-0.12 mg/L). RESULTS: The mean (SD) bactericidal activity of ofloxacin was 33.1 (15.2) min and 384.4 (60) min for ceftriaxone. After a 30 min exposure to ofloxacin, the mean (SD) duration of PAE was 154.7 (52.6) min. There was no detectable PAE after 1 h of exposure to ceftriaxone. For ofloxacin, bactericidal activity and PAE did not significantly differ between isolates with full or intermediate susceptibility provided ofloxacin concentrations were maintained at 4×MIC. CONCLUSIONS: Infections with S. Typhi with intermediate ofloxacin susceptibility may respond to doses that maintain ofloxacin concentrations at 4×MIC at the site of infection. The slow bactericidal activity of ceftriaxone and absent PAE may explain the slow clinical response in typhoid

    Essential Genetic Interactors of SIR2 Required for Spatial Sequestration and Asymmetrical Inheritance of Protein Aggregates

    Get PDF
    Sir2 is a central regulator of yeast aging and its deficiency increases daughter cell inheritance of stress-and aging-induced misfolded proteins deposited in aggregates and inclusion bodies. Here, by quantifying traits predicted to affect aggregate inheritance in a passive manner, we found that a passive diffusion model cannot explain Sir2-dependent failures in mother-biased segregation of either the small aggregates formed by the misfolded Huntingtin, Htt103Q, disease protein or heat-induced Hsp104-associated aggregates. Instead, we found that the genetic interaction network of SIR2 comprises specific essential genes required for mother-biased segregation including those encoding components of the actin cytoskeleton, the actin-associated myosin V motor protein Myo2, and the actin organization protein calmodulin, Cmd1. Co-staining with Hsp104-GFP demonstrated that misfolded Htt103Q is sequestered into small aggregates, akin to stress foci formed upon heat stress, that fail to coalesce into inclusion bodies. Importantly, these Htt103Q foci, as well as the ATPase-defective Hsp104(Y662A)-associated structures previously shown to be stable stress foci, co-localized with Cmd1 and Myo2-enriched structures and super-resolution 3-D microscopy demonstrated that they are associated with actin cables. Moreover, we found that Hsp42 is required for formation of heat-induced Hsp104(Y662A) foci but not Htt103Q foci suggesting that the routes employed for foci formation are not identical. In addition to genes involved in actin-dependent processes, SIR2-interactors required for asymmetrical inheritance of Htt103Q and heat-induced aggregates encode essential sec genes involved in ER-to-Golgi trafficking/ER homeostasis

    Constraining the Lyα escape fraction with far-infrared observations of Lyα emitters

    Get PDF
    We study the far-infrared properties of 498 Lyα emitters (LAEs) at z = 2.8, 3.1, and 4.5 in the Extended Chandra Deep Field-South, using 250, 350, and 500μm data from the Herschel Multi-tiered Extragalactic Survey and 870μm data from the LABOCA ECDFS Submillimeter Survey. None of the 126, 280, or 92 LAEs at z = 2.8, 3.1, and 4.5, respectively, are individually detected in the far-infrared data. We use stacking to probe the average emission to deeper flux limits, reaching 1σ depths of ∼0.1 to 0.4 mJy. The LAEs are also undetected at ?3σ in the stacks, although a 2.5σ signal is observed at 870μm for the z = 2.8 sources. We consider a wide range of far-infrared spectral energy distributions (SEDs), including an M82 and an Sd galaxy template, to determine upper limits on the far-infrared luminosities and far-infrared-derived star formation rates of the LAEs. These star formation rates are then combined with those inferred from the Lyα and UV emission to determine lower limits on the LAEs’ Lyα escape fraction (f esc (Lyα)). For the Sd SED template, the inferred LAEs f esc (Lyα) are ?30% (1σ) at z = 2.8, 3.1, and 4.5, which are all significantly higher than the global f esc (Lyα) at these redshifts. Thus, if the LAEs f esc (Lyα) follows the global evolution, then they have warmer far-infrared SEDs than the Sd galaxy template. The average and M82 SEDs produce lower limits on the LAE f esc (Lyα) of ∼10%–20% (1σ), all of which are slightly higher than the global evolution of f esc (Lyα), but consistent with it at the 2σ–3σ level

    A closed bipolar electrochemical cell for the interrogation of BDD single particles : electrochemical advanced oxidation

    Get PDF
    A closed bipolar electrochemical cell containing two conductive boron-doped diamond (BDD) particles of size ∼ 250 – 350 μm, produced by high-pressure high-temperature (HPHT) synthesis, has been used to demonstrate the applicability of single BDD particles for electrochemical oxidative degradation of the dye, methylene blue (MB). The cell is fabricated using stereolithography 3D printing and the BDD particles are located at either end of a solution excluded central channel. Platinum wire electrodes placed in each of the two outer solution compartments are used to drive electrochemical reactions at the two BDD particles, which, under bipolar conditions do not require direct electrical connection to a potential source. Experiments using ultra high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) show that the anodic pole BDD particle is able to electrochemically remove > 99 % of the dye (originally present at 1 × 10−4 M) to undetectable UHPLC-MS products in 600 s. Monitoring of the time dependant change in MB peak area, from the UHPLC chromatograms, enables a pseudo first order rate constant of 0.54 min−1 to be determined for MB removal. Given the large scale at which such particles can be produced (tonnes), such data bodes well for scale up opportunities using HPHT-grown BDD particles, where the particles can be assembled into high surface area electrode formats
    corecore