43 research outputs found

    Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy.

    Get PDF
    OBJECTIVE: Differentiating pathologic and physiologic high-frequency oscillations (HFOs) is challenging. In patients with focal epilepsy, HFOs occur during the transitional periods between the up and down state of slow waves. The preferred phase angles of this form of phase-event amplitude coupling are bimodally distributed, and the ripples (80-150 Hz) that occur during the up-down transition more often occur in the seizure-onset zone (SOZ). We investigated if bimodal ripple coupling was also evident for faster sleep oscillations, and could identify the SOZ. METHODS: Using an automated ripple detector, we identified ripple events in 40-60 min intracranial electroencephalography (iEEG) recordings from 23 patients with medically refractory mesial temporal lobe or neocortical epilepsy. The detector quantified epochs of sleep oscillations and computed instantaneous phase. We utilized a ripple phasor transform, ripple-triggered averaging, and circular statistics to investigate phase event-amplitude coupling. RESULTS: We found that at some individual recording sites, ripple event amplitude was coupled with the sleep oscillatory phase and the preferred phase angles exhibited two distinct clusters (p \u3c 0.05). The distribution of the pooled mean preferred phase angle, defined by combining the means from each cluster at each individual recording site, also exhibited two distinct clusters (p \u3c 0.05). Based on the range of preferred phase angles defined by these two clusters, we partitioned each ripple event at each recording site into two groups: depth iEEG peak-trough and trough-peak. The mean ripple rates of the two groups in the SOZ and non-SOZ (NSOZ) were compared. We found that in the frontal (spindle, p = 0.009; theta, p = 0.006, slow, p = 0.004) and parietal lobe (theta, p = 0.007, delta, p = 0.002, slow, p = 0.001) the SOZ incidence rate for the ripples occurring during the trough-peak transition was significantly increased. SIGNIFICANCE: Phase-event amplitude coupling between ripples and sleep oscillations may be useful to distinguish pathologic and physiologic events in patients with frontal and parietal SOZ

    An unconventional platform for two-dimensional Kagome flat bands on semiconductor surfaces

    Full text link
    In condensed matter physics, the Kagome lattice and its inherent flat bands have attracted considerable attention for their potential to host a variety of exotic physical phenomena. Despite extensive efforts to fabricate thin films of Kagome materials aimed at modulating the flat bands through electrostatic gating or strain manipulation, progress has been limited. Here, we report the observation of a novel dd-orbital hybridized Kagome-derived flat band in Ag/Si(111) 3×3\sqrt{3}\times\sqrt{3} as revealed by angle-resolved photoemission spectroscopy. Our findings indicate that silver atoms on a silicon substrate form a Kagome-like structure, where a delicate balance in the hopping parameters of the in-plane dd-orbitals leads to destructive interference, resulting in a flat band. These results not only introduce a new platform for Kagome physics but also illuminate the potential for integrating metal-semiconductor interfaces into Kagome-related research, thereby opening a new avenue for exploring ideal two-dimensional Kagome systems.Comment: 7 pages, 4 figure

    Ripples Have Distinct Spectral Properties and Phase-Amplitude Coupling With Slow Waves, but Indistinct Unit Firing, in Human Epileptogenic Hippocampus

    Get PDF
    Ripple oscillations (80–200 Hz) in the normal hippocampus are involved in memory consolidation during rest and sleep. In the epileptic brain, increased ripple and fast ripple (200–600 Hz) rates serve as a biomarker of epileptogenic brain. We report that both ripples and fast ripples exhibit a preferred phase angle of coupling with the trough-peak (or On-Off) state transition of the sleep slow wave in the hippocampal seizure onset zone (SOZ). Ripples on slow waves in the hippocampal SOZ also had a lower power, greater spectral frequency, and shorter duration than those in the non-SOZ. Slow waves in the mesial temporal lobe modulated the baseline firing rate of excitatory neurons, but did not significantly influence the increased firing rate associated with ripples. In summary, pathological ripples and fast ripples occur preferentially during the On-Off state transition of the slow wave in the epileptogenic hippocampus, and ripples do not require the increased recruitment of excitatory neurons.Fil: Weiss, Shennan A.. Thomas Jefferson University; Estados UnidosFil: Song, Inkyung. Thomas Jefferson University; Estados UnidosFil: Leng, Mei. University of California at Los Angeles; Estados UnidosFil: Pastore, Tomás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Waldman, Zachary. Thomas Jefferson University; Estados UnidosFil: Orosz, Iren. University of California at Los Angeles; Estados UnidosFil: Gorniak, Richard. Thomas Jefferson University; Estados UnidosFil: Donmez, Mustafa. Thomas Jefferson University; Estados UnidosFil: Sharan, Ashwini. Thomas Jefferson University; Estados UnidosFil: Wu, Chengyuan. Thomas Jefferson University; Estados UnidosFil: Fried, Itzhak. University of California at Los Angeles; Estados UnidosFil: Sperling, Michael R.. Thomas Jefferson University; Estados UnidosFil: Bragin, Anatol. University of California at Los Angeles; Estados UnidosFil: Engel, Jerome. University of California at Los Angeles; Estados UnidosFil: Nir, Yuval. Tel Aviv University; IsraelFil: Staba, Richard. University of California at Los Angeles; Estados Unido

    Interactions between the FTO rs9939609 polymorphism, body mass index, and lifestyle-related factors on metabolic syndrome risk

    Get PDF
    Whether the FTO polymorphisms interact with environmental factors has not yet been evaluated in associations with metabolic syndrome (MS) risk. The present study investigated the association of the FTO rs9939609 genotypes, body mass index (BMI), and lifestyle-related factors including smoking, alcohol drinking, physical activity, and diet with MS incidence. A population-based prospective cohort study comprised 3,504 male and female Koreans aged 40 to 69 years. At the beginning of the study, all individuals were free of MS and known cardiovascular disease. Incident cases of MS were identified by biennial health examinations during a follow-up period from April 17, 2003 to April 15, 2009. Pooled logistic regression analysis was applied to obtain relative odds (RO) of MS with its 95% confidence interval (CI). After controlling for potential MS risk factors, we observed no association between the rs9939609 genotypes and MS incidence. In analysis stratified by BMI, however, carriers with the FTO risk allele whose BMI is 29 kg/m2 or greater showed an approximately 6-fold higher RO (95% CI: 3.82 to 9.30) compared with non-carriers with BMI less than 25 kg/m2. In particular, the association between the rs9939609 variants and MS risk was significantly modified by high BMI (P-value for interaction < 0.05). Such significant interaction appeared in associations with central obesity and high blood pressure among the MS components. Because carriers of the FTO risk alleles who had BMI of 29 kg/m2 or greater are considered a high risk population, we suggest that they may need intensive weight loss regimens to prevent MS development

    Electronic band structure of (111) SrRuO3SrRuO_{3} thin film-an angle-resolved photoemission spectroscopy study

    Full text link
    We studied the electronic band structure of pulsed laser deposition (PLD) grown (111)-oriented SrRuO3_3 (SRO) thin films using \textit{in situ} angle-resolved photoemission spectroscopy (ARPES) technique. We observed previously unreported, light bands with a renormalized quasiparticle effective mass of about 0.8mem_{e}. The electron-phonon coupling underlying this mass renormalization yields a characteristic "kink" in the band dispersion. The self-energy analysis using the Einstein model suggests five optical phonon modes covering an energy range 44 to 90 meV contribute to the coupling. Besides, we show that the quasiparticle spectral intensity at the Fermi level is considerably suppressed, and two prominent peaks appear in the valance band spectrum at binding energies of 0.8 eV and 1.4 eV, respectively. We discuss the possible implications of these observations. Overall, our work demonstrates that high-quality thin films of oxides with large spin-orbit coupling can be grown along the polar (111) orientation by the PLD technique, enabling \textit{in situ} electronic band structure study. This could allow for characterizing the thickness-dependent evolution of band structure of (111) heterostructures-a prerequisite for exploring possible topological quantum states in the bilayer limit

    Understanding the Role of Electronic Effects in CO on the Pt-Sn Alloy Surface via Band Structure Measurements

    Get PDF
    Using angle-resolved photoemission spectroscopy, we show direct evidence for charge transfer between adsorbed molecules and metal substrates, i.e., chemisorption of CO on Pt(111) and Pt-Sn/Pt(111) 2 x 2 surfaces. The observed band structures show a unique signature of charge transfer as CO atoms are adsorbed, revealing the roles of specific orbital characters participating in the chemisorption process. As the coverage of CO increases, the degree of charge transfer between CO and Pt shows a clear difference to that of Pt-Sn. With comparison to density functional theory calculation results, the observed distinct features in the band structure are interpreted as back-donation bonding states formed between the Pt molecular orbital and the 2 pi orbital of CO. Furthermore, the change in the surface charge concentration, measured from the Fermi surface area, shows that the Pt surface has a larger charge concentration change than the Pt-Sn surface upon CO adsorption. The differences between Pt and Pt-Sn surfaces are due to the effect of Pt-Sn intermetallic bonding on the interaction of CO with the surface

    Affective engagement and subsequent visual processing: Effects of contrast and spatial frequency.

    No full text

    Photon energy dependent circular dichroism in angle-resolved photoemission from Au(111) surface states

    Get PDF
    We performed angle-resolved photoemission experiments on Au(111) surface with circularly polarized light. Data were taken with photon energies in the range between 20 and 100 eV in order to investigate the photon energy dependent behavior in the circular dichroism (CD). While the magnitude of the normalized CD value varies with a maximum value of about 70%, the sign of CD does not change for the photon energy within the range, inconsistent with the prediction based on the density-functional theory (DFT) calculation. Our calculation of the CD using DFT initial state and free electron final state shows a better consistency with experimental results than an earlier study using the inverse low-energy electron diffraction state as the final state. We briefly discuss the dominating factor that determines the CD from Au(111) states. © 2017 American Physical Society1101sciescopu
    corecore