42 research outputs found

    High Seroprevalence of Echinococossis, Schistosomiasis and Toxoplasmosis among the Populations in Babati and Monduli Districts, Tanzania.

    Get PDF
    BackgroundThe neglected tropical diseases, echinococcosis, schistosomiasis and toxoplasmosis are all globally widespread zoonotic diseases with potentially harmful consequences. There is very limited data available on the prevalence of these infections, except for schistosmiasis, in underdeveloped countries. This study aimed to determine the seroprevalence of Echinococcus multilocularis, Schistosoma mansoni, and Toxoplasma gondii antibodies in populations from the Monduli and Babati districts in Tanzania.MethodsA total of 345 blood samples were collected from 160 and 185 randomly selected households from Babati and Monduli districts, Tanzania between February and May of 2012 and analyzed them using the enzyme linked immunosorbent assay. The antibodies were determined using the NovaLisa® Toxoplasma gondii IgG, NovaLisa® Schistosoma Mansoni IgG, NovaLisa® Echinococcus IgG and NovaLisa® Toxoplasma gondii IgM kits (Novatec, Germany).ResultsThe seropositivity estimated for E. multilocularis, S. mansoni, and T. gondii IgG was 11.3% (95% confidence interval (CI): 7.96 - 14.6), 51.3% (95% CI: 46.0 - 56.5), and 57.68% (95% CI: 52.5 - 62.9), respectively. The seropositivity for T. gondii IgM was 11.3% (95% CI: 7.96 - 14.6). Living in the Monduli district was found to be the main risk factor for IgG seropositivity for both schistosomiasis (OR =1.94; 95% CI: 1.23 - 3.08; p =0.005) and toxoplasmosis (OR =2.09; 95% CI: 1.31-3.33; p =0.002).ConclusionsThese results suggest that restricting disease transmission, implementing control measures, and introducing training projects to increase public awareness are imperative, particularly for the Monduli district

    Immunization with a DNA vaccine cocktail encoding TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 genes protects mice against chronic toxoplasmosis

    Get PDF
    Toxoplasmosis is a zoonotic disease caused by the intracellular protozoan Toxoplasma gondii; and a major source of infection in humans is via ingestion of T. gondii tissue cysts. Ultimately, the goal of anti-toxoplasmosis vaccines is to elicit a sustainable immune response, capable of preventing formation of the parasite tissue cysts—or, at least, to restrain its growth. In this study, we formulated a cocktail DNA vaccine and investigated its immunologic efficacy as a protection against the establishment of T. gondii cysts in the mouse brain. This multicomponent DNA vaccine, encoded the TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 genes, which play key roles in the pathogenesis of T. gondii infection. Results showed that mice immunized via intramuscular injection three times, at 2-week intervals with this multicomponent DNA vaccine, mounted a strong humoral and cellular immune response, indicated by significantly high levels of total IgG, CD4+ and CD8+ T lymphocytes, and antigen-specific lymphocyte proliferation when compared with non-immunized mice. Immunization also induced a mixed Th1/Th2 response, with a slightly elevated IgG2a to IgG1 ratio. The increased production of proinflammatory cytokines gamma-interferon, interleukin-2, and interleukin-12 (p 0.05). The number of brain cysts in immunized mice was significantly less than those in non-immunized mice (643.33 ± 89.63 versus 3,244.33 ± 96.42, p < 0.0001), resulting in an 80.22% reduction in the parasite cyst burden. These findings indicate that a multicomponent DNA vaccine, encoding TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 genes, shows promise as an immunization strategy against chronic toxoplasmosis in mice, and calls for a further evaluation in food-producing animals

    Study on the functional role of immunoglobulin E as surrogate marker for HIV/AIDS infection

    No full text

    Adsorption of Pb<sup>2+</sup> Ions from Aqueous Solution onto Porous Kappa-Carrageenan/Cellulose Hydrogels: Isotherm and Kinetics Study

    No full text
    Heavy metal ion pollution poses severe health risks. In this study, a kappa-carrageenan/cellulose (κ-CG/CL) hydrogel was prepared using a facile one-step method to remove Pb2+ ions from aqueous solutions. The functional groups and crystallinity nature of κ-CG/CL hydrogel have been identified via Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). In contrast, the porous morphology and size distribution on the surface of κ-CG/CL hydrogel with a pore size of 1–10 μm were identified using scanning electron microscope (SEM) and Brunauer–Emmett–Teller (BET) surface area analysis. The as-prepared κ-CG/CL hydrogel effectively removed Pb2+ ions, primary environmental pollutants. The effects of pH and contact time on Pb2+ adsorption were studied along with the adsorption isotherms and kinetics of Pb2+ adsorption onto the hydrogels from aqueous solutions. Notably, the aqueous solutions were effectively treated with the prepared κ-CG/CL hydrogels to remove Pb2+ ions. The adsorption results fit well with pseudo-first- and second-order kinetic, Elovich, intra-particle diffusion, and Langmuir and Freundlich isotherm models. Based on the fitting results, the maximum adsorption capacity was obtained with the Freundlich isotherm model of κ-CG/CL hydrogel found to be 486 ± 28.5 mg/g (79%). Reusability studies revealed that the κ-CG/CL hydrogel could remove Pb2+ ions with more than 79% removal efficiency after eight adsorption–desorption cycles. In addition, its mechanism for efficiently adsorbing and removal of Pb2+ ions was analyzed. These findings imply that the κ-CG/CL hydrogel has substantial potential for application in removing and recycling heavy metal ions from aqueous solutions

    Sensitive and selective fluorometric determination of DNA by using layered hexagonal nanosheets of a covalent organic framework prepared from p-phenylenediamine and benzene-1,3,5-tricarboxaldehyde

    No full text
    A modified method is described for the preparation of amino-functionalized covalent organic framework nanosheets (COF-NSs). These consist of hexagonal layered sheets and were prepared from commercially available starting materials (p-phenylenediamine and benzene-1,3,5-tricarboxaldehyde). The interlayer stacking interactions between the ultra-thin COF-NSs became weak because the pi stacking is destroyed by sonication. This result in the exfoliation of COF-NSs. As an application, the COF-NSs used for sensitive and selective fluorometric determination of DNA. To reach this goal, H1 and H2 hairpin-like DNA probes were chosen; H1 used Texas Red-labeled dye as a fluorescent probe. The addition of the COF-NSs, the hairpin probes was adsorbed onto the porous surface of the COFNSs. The pi stacking and hydrogen-bond interactions between COFNSs and nucleic acid quench the fluorescence of the Texas red-labeled probe. The target DNA enables the recovery of the quenched fluorescence of the Texas red-labelled probe by triggering an inter-chain hybridization within hairpin probes. This results in a weaker interaction of double-stranded DNA (dsDNA) with the COFNSs. Consequently, the dsDNA detaches from the COFNSs, thereby recovering the dye's fluorescence (excitation/emission maxima at 590/612 nm) with increasing target DNA concentration. The findings were applied to design a method for the determination of DNA that has a 2 pM detection limit. This is significantly lower than the limit of detection reported previously for 2D nanomaterial-based fluorometric DNA assays

    Specific, sensitive, and rapid diagnosis of active Toxoplasmosis by a Loop-Mediated Isothermal Amplification method using blood samples from patients

    No full text
    Loop-mediated isothermal amplification (LAMP), a rapid nucleic acid amplification method, was developed for the clinical diagnosis of toxoplasmosis. Three LAMP assays based on the SAG1, SAG2, and B1 genes of Toxoplasma gondii were developed. The sensitivities and specificities of the LAMP assays were evaluated by comparison with the results of conventional nested PCR. The LAMP assays were highly sensitive and had a detection limit of 0.1 tachyzoite, and no cross-reactivity with the DNA of other parasites was observed. Blood was collected from 105 individuals to test the LAMP assays: 40 patients with active toxoplasmosis, 40 negative controls, and 25 patients with other parasitic infections. The SAG2-based LAMP (SAG2-LAMP) had a greater sensitivity (87.5) than the SAG1-LAMP (80), B1-LAMP (80), and nested PCR (62.5). All the LAMP assays and nested PCR were 100 specific. This is the first report of a study which applied the LAMP method to diagnose toxoplasmosis from human blood samples. Due to its simplicity, sensitivity, and specificity, LAMP is suggested as an appropriate method for routine diagnosis of active toxoplasmosis in humans
    corecore