135 research outputs found

    The Role of Forensic Accounting in U.S. Counterterrorism Efforts

    Get PDF
    The September 11th attacks on the World Trade Center directed international attention to the financial component of terrorist operations. The demand for forensic accounts has continued to increase because of a growing intolerance for fraud and terrorist activity. Forensic accountants have and will continue to have a vital role in United States\u27 counterterrorism efforts in the post-9/11 era by detecting acts of fraud and money laundering. Comprehensive review of relevant literature including books, peer-reviewed articles, government databases, court records and news media confirms that forensic accountants are equipped with special skills and analytical tools that make them valuable members of terrorism task forces. The soft skills of forensic accountants typically include attention to detail, self-motivation, professional communication, and integrity. Technical skills include broad industry knowledge, data gathering techniques, advanced financial statement interpretation, and ratio analysis. Literature review also indicates that government organizations are increasingly reliant on financial analysts for gathering evidence and preparing summary reports for investigations, prosecutions, and court proceedings. Additionally, a demand exists for forensic accountants in private-sector companies to implement and monitor systems of internal control (e.g. fraud and enterprises risk management frameworks) and communicate threats to the FBI or Department of Homeland Security. While past research mainly includes retrospective analysis of terrorist financing, this paper will argue that forensic accounting will continue to be relevant due to technological change and shifting political, legal, and financial climates

    Humidifier Development and Applicability to the Next Generation Portable Life Support System

    Get PDF
    A development effort at the NASA Johnson Space Center investigated technologies to determine whether a humidifier would be required in the Portable Life Support System (PLSS) envisioned for future exploration missions. The humidifier has been included in the baseline PLSS schematic since performance testing of the Rapid Cycle Amine (RCA) indicates that the RCA over-dries the ventilation gas stream. Performance tests of a developmental humidifier unit and commercial off-the-shelf (COTS) units were conducted in December 2009. Following these tests, NASA revisited the need for a humidifier via system analysis. Results of this investigation indicate that it is feasible to meet humidity requirements without the humidifier if other changes are made to the PLSS ventilation loop and the Liquid Cooling and Ventilation Garment (LCVG)

    J/Psi and Psi' total cross sections and formation times from data for charmonium suppression in pApA collisions

    Full text link
    The recent data for E866 experiment on the x_F dependence for charmonium suppression in pA collisions at 800 GeV are analyzed using a time- and energy-dependent preformed charmonium absorption cross section \sigma_{abs}^\psi(\tau,\sqrt{s}). For \sqrt{s}=10 GeV the initially (\tau=0) produced premeson has an absorption cross section of \sigma_{pr}~3mb. At the same energy but for \tau -> \infty one deduces for the total cross sections \sigma_{tot}^{J/Psi N}=(2.8\pm 0.3)mb, \sigma_{tot}^{J/Psi N}= (10.5\pm 3.6)mb. The date are compatible with a formation time \tau_{1/2}=0.6 fm/c.Comment: 13 pages of Latex including 2 figures; typos in the abstract are correcte

    Investigating a Hybrid Metaheuristic For Job Shop Rescheduling

    Get PDF
    Previous research has shown that artificial immune systems can be used to produce robust schedules in a manufacturing environment. The main goal is to develop building blocks (antibodies) of partial schedules that can be used to construct backup solutions (antigens) when disturbances occur during production. The building blocks are created based upon underpinning ideas from artificial immune systems and evolved using a genetic algorithm (Phase I). Each partial schedule (antibody) is assigned a fitness value and the best partial schedules are selected to be converted into complete schedules (antigens). We further investigate whether simulated annealing and the great deluge algorithm can improve the results when hybridised with our artificial immune system (Phase II). We use ten fixed solutions as our target and measure how well we cover these specific scenarios

    Assessing the effects of multiple infections and long latency in the dynamics of tuberculosis

    Get PDF
    In order to achieve a better understanding of multiple infections and long latency in the dynamics of Mycobacterium tuberculosis infection, we analyze a simple model. Since backward bifurcation is well documented in the literature with respect to the model we are considering, our aim is to illustrate this behavior in terms of the range of variations of the model's parameters. We show that backward bifurcation disappears (and forward bifurcation occurs) if: (a) the latent period is shortened below a critical value; and (b) the rates of super-infection and re-infection are decreased. This result shows that among immunosuppressed individuals, super-infection and/or changes in the latent period could act to facilitate the onset of tuberculosis. When we decrease the incubation period below the critical value, we obtain the curve of the incidence of tuberculosis following forward bifurcation; however, this curve envelops that obtained from the backward bifurcation diagram

    Identification of Mannose Interacting Residues Using Local Composition

    Get PDF
    BACKGROUND: Mannose binding proteins (MBPs) play a vital role in several biological functions such as defense mechanisms. These proteins bind to mannose on the surface of a wide range of pathogens and help in eliminating these pathogens from our body. Thus, it is important to identify mannose interacting residues (MIRs) in order to understand mechanism of recognition of pathogens by MBPs. RESULTS: This paper describes modules developed for predicting MIRs in a protein. Support vector machine (SVM) based models have been developed on 120 mannose binding protein chains, where no two chains have more than 25% sequence similarity. SVM models were developed on two types of datasets: 1) main dataset consists of 1029 mannose interacting and 1029 non-interacting residues, 2) realistic dataset consists of 1029 mannose interacting and 10320 non-interacting residues. In this study, firstly, we developed standard modules using binary and PSSM profile of patterns and got maximum MCC around 0.32. Secondly, we developed SVM modules using composition profile of patterns and achieved maximum MCC around 0.74 with accuracy 86.64% on main dataset. Thirdly, we developed a model on a realistic dataset and achieved maximum MCC of 0.62 with accuracy 93.08%. Based on this study, a standalone program and web server have been developed for predicting mannose interacting residues in proteins (http://www.imtech.res.in/raghava/premier/). CONCLUSIONS: Compositional analysis of mannose interacting and non-interacting residues shows that certain types of residues are preferred in mannose interaction. It was also observed that residues around mannose interacting residues have a preference for certain types of residues. Composition of patterns/peptide/segment has been used for predicting MIRs and achieved reasonable high accuracy. It is possible that this novel strategy may be effective to predict other types of interacting residues. This study will be useful in annotating the function of protein as well as in understanding the role of mannose in the immune system
    corecore