422 research outputs found
Charging of highly resistive granular metal films
We have used the Scanning Kelvin probe microscopy technique to monitor the
charging process of highly resistive granular thin films. The sample is
connected to two leads and is separated by an insulator layer from a gate
electrode. When a gate voltage is applied, charges enter from the leads and
rearrange across the sample. We find very slow processes with characteristic
charging times exponentially distributed over a wide range of values, resulting
in a logarithmic relaxation to equilibrium. After the gate voltage has been
switched off, the system again relaxes logarithmically slowly to the new
equilibrium. The results cannot be explained with diffusion models, but most of
them can be understood with a hopping percolation model, in which the
localization length is shorter than the typical site separation. The technique
is very promising for the study of slow phenomena in highly resistive systems
and will be able to estimate the conductance of these systems when direct
macroscopic measurement techniques are not sensitive enough.Comment: 8 pages, 7 figure
Covalent C–N Bond Formation through a Surface Catalyzed Thermal Cyclodehydrogenation
The integration of substitutional dopants at predetermined positions along the hexagonal lattice of graphene-derived polycyclic aromatic hydrocarbons is a critical tool in the design of functional electronic materials. Here, we report the unusually mild thermally induced oxidative cyclodehydrogenation of dianthryl pyrazino[2,3-g]quinoxalines to form the four covalent C–N bonds in tetraazateranthene on Au(111) and Ag(111) surfaces. Bond-resolved scanning probe microscopy, differential conductance spectroscopy, along with first-principles calculations unambiguously confirm the structural assignment. Detailed mechanistic analysis based on ab initio density functional theory calculations reveals a stepwise mechanism featuring a rate determining barrier of only ΔE⧧ = 0.6 eV, consistent with the experimentally observed reaction conditions
Re-entrance and entanglement in the one-dimensional Bose-Hubbard model
Re-entrance is a novel feature where the phase boundaries of a system exhibit
a succession of transitions between two phases A and B, like A-B-A-B, when just
one parameter is varied monotonically. This type of re-entrance is displayed by
the 1D Bose Hubbard model between its Mott insulator (MI) and superfluid phase
as the hopping amplitude is increased from zero. Here we analyse this
counter-intuitive phenomenon directly in the thermodynamic limit by utilizing
the infinite time-evolving block decimation algorithm to variationally minimize
an infinite matrix product state (MPS) parameterized by a matrix size chi.
Exploiting the direct restriction on the half-chain entanglement imposed by
fixing chi, we determined that re-entrance in the MI lobes only emerges in this
approximate when chi >= 8. This entanglement threshold is found to be
coincident with the ability an infinite MPS to be simultaneously
particle-number symmetric and capture the kinetic energy carried by
particle-hole excitations above the MI. Focussing on the tip of the MI lobe we
then applied, for the first time, a general finite-entanglement scaling
analysis of the infinite order Kosterlitz-Thouless critical point located
there. By analysing chi's up to a very moderate chi = 70 we obtained an
estimate of the KT transition as t_KT = 0.30 +/- 0.01, demonstrating the how a
finite-entanglement approach can provide not only qualitative insight but also
quantitatively accurate predictions.Comment: 12 pages, 8 figure
Self-Assembled Triply Periodic Minimal Surfaces as moulds for Photonic Band Gap Materials
We propose systems with structures defined by self-assembled triply periodic
minimal surfaces (STPMS) as candidates for photonic bandgap materials. To
support our proposal we have calculated the photonic bands for different STPMS
and we have found that, at least, the double diamond and gyroid structures
present full photonic bandgaps. Given the great variety of systems which
crystalize in these structures, the diversity of possible materials that form
them and the range of lattice constants they present, the construction of
photonic bandgap materials with gaps in the visible range may be presently
within reach.Comment: 3 pages, 2 figures, RevTe
Growth Kinetics in a Phase Field Model with Continuous Symmetry
We discuss the static and kinetic properties of a Ginzburg-Landau spherically
symmetric model recently introduced (Phys. Rev. Lett. {\bf 75}, 2176,
(1995)) in order to generalize the so called Phase field model of Langer. The
Hamiltonian contains two invariant fields and bilinearly
coupled. The order parameter field evolves according to a non conserved
dynamics, whereas the diffusive field follows a conserved dynamics. In the
limit we obtain an exact solution, which displays an interesting
kinetic behavior characterized by three different growth regimes. In the early
regime the system displays normal scaling and the average domain size grows as
, in the intermediate regime one observes a finite wavevector
instability, which is related to the Mullins-Sekerka instability; finally, in
the late stage the structure function has a multiscaling behavior, while the
domain size grows as .Comment: 9 pages RevTeX, 9 figures included, files packed with uufiles to
appear on Phy. Rev.
The Cadiz Contourite Channel: Sandy contourites, bedforms and dynamic current interaction
The Cadiz Contourite Channel is the largest and most prominent contourite channel in the middle slope of the Gulf of Cadiz, and is known to channelise the southern branch of the Lower Core of Mediterranean Outflow Water (MOW) as it flows westwards from the Gibraltar Gateway. The channel lies in water depth between 650 and 1500 m, is 150 km long, 2–12 km wide, up to 120 m deep, and broadly s-shaped in plan view. It has several associated subparallel marginal channels and shorter spillover channel segments. Its geometry is controlled by the interaction of a strong bottom current with the seafloor morphology, affected by neotectonic deformation and diapiric intrusion. Bottom photographs and dredge hauls reveal a channel floor shaped by high-energy flow, in places with bare rock, boulders and gravel, and elsewhere covered with sandy contourites. The rocky substrate and derived clasts are formed of authigenic iron-rich carbonates, testifying the high degree of fluid escape from adjacent diapiric ridges and mud volcanoes. The sandy substrate shows a wide range of current-induced bedforms including small, straight-crested ripples, large sinuous sand waves and dunes (wavelength 3.5–5 m, height 0.3–0.9 m), weak surface lineation on sands, and aligned gravel stringers and deep erosive scours around large boulders. Bedform orientation indicates flows directed to the south/south-west (main channel) and west (spillover channel), which can be related to MOW bottom currents, and current velocities that vary between about 0.2 and 0.8 m s− 1, even in the same channel location. However, current vane orientation was clearly responding, at least in part, to tidal effects and periodicity in the Gulf of Cadiz at the time the photographs were taken. Maximum current velocities are achieved by a combination of barotropic and internal tides (probably generated at the continental slope) that reinforce the normal MOW flow. In addition, meteorologically-induced internal waves with periods shorter than tidal ones may exert an even greater influence on current intensity, especially when they occur at times of sudden changes of meteorological forcing. This effect further influences MOW variability. In all cases, the funnelling effect of the Cadiz Channel amplifies tidal or meteorologically-induced bottom currents
UPGRADE OF THE PS BOOSTER-TO-ISOLDE BEAM TRANSFER LINE TO FACILITATE AN INCREASE IN PROTON DRIVER ENERGY
Following the successful completion of the LHC Injectors Upgrade (LIU) project, since 2021 the Proton Synchrotron (PS) Booster has served the LHC injector chain with protons at an increased kinetic energy of 2 GeV. An upgrade of the ISOLDE (Isotope Separator On-Line DEvice) facility has long been considered to produce radioactive ion beams with a higher energy proton driver beam. A Consolidation and Improvements programme is presently underway to maintain ISOLDE’s position as a world-leading ISOL facility in the decades to come, with activities planned during the upcoming Long Shutdown 3 (LS3) (2026 - 28) and beyond. This contribution details a study to upgrade the beam line from the PS Booster to ISOLDE to operate between 1.4 and 2 GeV, and to increase the power of the proton driver in the future, assuming the replacement of the two beam dumps behind the facility’s production targets
- …