We have used the Scanning Kelvin probe microscopy technique to monitor the
charging process of highly resistive granular thin films. The sample is
connected to two leads and is separated by an insulator layer from a gate
electrode. When a gate voltage is applied, charges enter from the leads and
rearrange across the sample. We find very slow processes with characteristic
charging times exponentially distributed over a wide range of values, resulting
in a logarithmic relaxation to equilibrium. After the gate voltage has been
switched off, the system again relaxes logarithmically slowly to the new
equilibrium. The results cannot be explained with diffusion models, but most of
them can be understood with a hopping percolation model, in which the
localization length is shorter than the typical site separation. The technique
is very promising for the study of slow phenomena in highly resistive systems
and will be able to estimate the conductance of these systems when direct
macroscopic measurement techniques are not sensitive enough.Comment: 8 pages, 7 figure