1,300 research outputs found

    Biotransformation of indigo carmine to isatin sulfonic acid by lyophilized mycelia from Trametes versicolor

    Get PDF
    Indigo carmine (IC) was biotrasformed to 5-isatinsulfonic acid using intracellular and associated enzymes from Trametes versicolor lyophilized mycelia; even when extracellular enzymes were absent, in high concentration solutions of IC (4 000 mg L-1) and non-sterile condition. T. versicolor was grown in wheat strew and malt extract liquid medium and harvested during the stationary growth phase, it was lyophilized and made to react with indigo carmine. Experimental series were performed at different IC concentrations (from 100 to 4000 mg L-1). Color removal was 99.90, 98.75, 88.35, 79.47, 70.0 and 40.35% for 100, 500, 1000, 2000, 3000 and 4000 mg L-1 of IC, respectively after 120 h with exception for 100 mg L-1 of IC, which reached total color removal after 1 h. Reacted mixture byproducts were separated by column chromatography. IC biotransformation to 5-isatinsulfonic acid was confirmed by HPLC, UV-VIS, FT- IR, 1H and 13C NMR spectroscopy. Activity of laccase from lyophilized mycelia was conserved after one year at 4°C. Dehydrated biological material in colorant biodegradation is a new method which allows obtaining high discoloration efficiencies. Lyophilized mycelia could be more stable than traditionally used wet biomass or liquid culture for biodegradation of color dye.Key words: Biodegradation, indigo carmine, Trametes versicolor

    Transport of Live Cells under Sterile Conditions Using a Chemotactic Droplet

    Get PDF
    © 2018 The Author(s). 1-Decanol droplets, formed in an aqueous medium containing decanoate at high pH, become chemotactic when a chemical gradient is placed in the external aqueous environment. We investigated if such droplets can be used as transporters for living cells. We developed a partially hydrophobic alginate capsule as a protective unit that can be precisely placed in a droplet and transported along chemical gradients. Once the droplets with cargo reached a defined final destination, the association of the alginate capsule and decanol droplet was disrupted and cargo deposited. Both Escherichia coli and Bacillus subtilis cells survived and proliferated after transport even though transport occurred under harsh and sterile conditions

    Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water

    Get PDF
    Using residual biomass for biochar production to be applied for water treatment is a cost effective and environmental-friendly alternative to activated carbon. However, biochars are materials with low textural properties (total specific area and total pore volume) and hence lower adsorption capacity compared to activated carbon. In that sense, this study aimed to impregnate ZnO on biochar derived from agricultural residual biomass to improve its As(V) and Pb(II) adsorption capacity. Biochars derived from corn cob and coffee husk were prepared by carbonization in mild conditions and then impregnated with ZnO using precipitation method. The resulting materials were comprehensively characterized describing their textural, chemical, surface, morphological and structural properties. Adsorption capacity of the produced materials was tested with As(V) and Pb(II) in kinetic and equilibrium experiments. The ZnO impregnation of the biochars derived from both precursors improves their adsorption capacities and, in most cases, accelerates the rate of adsorption of both pollutants. The best results were obtained by corncob derived ZnO impregnated biochar (CC-ZnO) reaching a maximum equilibrium adsorption capacity of 25.9 mg of As(V)/g and at least 25.8 mg of Pb(II)/g. The corncob derived ZnO impregnated biochar is a suitable adsorbent candidate for the use in the removal of As and Pb from polluted water

    The Crabtree effect shapes the Saccharomyces cerevisiae lag phase during the switch between different carbon sources

    Get PDF
    When faced with environmental changes, microbes often enter a temporary growth arrest during which they reprogram the expression of specific genes to adapt to the new conditions. A prime example of such a lag phase occurs when microbes need to switch from glucose to other, less-preferred carbon sources. Despite its industrial relevance, the genetic network that determines the duration of the lag phase has not been studied in much detail. Here, we performed a genome-wide Bar-Seq screen to identify genetic determinants of the Saccharomyces cerevisiae glucose-to-galactose lag phase. The results show that genes involved in respiration, and specifically those encoding complexes III and IV of the electron transport chain, are needed for efficient growth resumption after the lag phase. Anaerobic growth experiments confirmed the importance of respiratory energy conversion in determining the lag phase duration. Moreover, overexpression of the central regulator of respiration, HAP4, leads to significantly shorter lag phases. Together, these results suggest that the glucose-induced repression of respiration, known as the Crabtree effect, is a major determinant of microbial fitness in fluctuating carbon environments. IMPORTANCE: The lag phase is arguably one of the prime characteristics of microbial growth. Longer lag phases result in lower competitive fitness in variable environments, and the duration of the lag phase is also important in many industrial processes where long lag phases lead to sluggish, less efficient fermentations. Despite the immense importance of the lag phase, surprisingly little is known about the exact molecular processes that determine its duration. Our study uses the molecular toolbox of S. cerevisiae combined with detailed growth experiments to reveal how the transition from fermentative to respirative metabolism is a key bottleneck for cells to overcome the lag phase. Together, our findings not only yield insight into the key molecular processes and genes that influence lag duration but also open routes to increase the efficiency of industrial fermentations and offer an experimental framework to study other types of lag behavior

    Characterization of Synaptically Connected Nuclei in a Potential Sensorimotor Feedback Pathway in the Zebra Finch Song System

    Get PDF
    Birdsong is a learned behavior that is controlled by a group of identified nuclei, known collectively as the song system. The cortical nucleus HVC (used as a proper name) is a focal point of many investigations as it is necessary for song production, song learning, and receives selective auditory information. HVC receives input from several sources including the cortical area MMAN (medial magnocellular nucleus of the nidopallium). The MMAN to HVC connection is particularly interesting as it provides potential sensorimotor feedback to HVC. To begin to understand the role of this connection, we investigated the physiological relation between MMAN and HVC activity with simultaneous multiunit extracellular recordings from these two nuclei in urethane anesthetized zebra finches. As previously reported, we found similar timing in spontaneous bursts of activity in MMAN and HVC. Like HVC, MMAN responds to auditory playback of the bird's own song (BOS), but had little response to reversed BOS or conspecific song. Stimulation of MMAN resulted in evoked activity in HVC, indicating functional excitation from MMAN to HVC. However, inactivation of MMAN resulted in no consistent change in auditory responses in HVC. Taken together, these results indicate that MMAN provides functional excitatory input to HVC but does not provide significant auditory input to HVC in anesthetized animals. We hypothesize that MMAN may play a role in motor reinforcement or coordination, or may provide modulatory input to the song system about the internal state of the animal as it receives input from the hypothalamus

    Knowledge of cervical tuberculosis lymphadenitis and its treatment in pastoral communities of the Afar region, Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection with <it>Mycobacterium bovis </it>(Mb) predominantly causes cervical TB lymphadenitis (TBL). Raw milk is considered the main source of Mb infection and raw milk is a major food source for Afar pastoralists. The aim of this study was to assess Afar pastoralists' knowledge concerning cervical TBL and its treatment.</p> <p>Methods</p> <p>A community-based cross-sectional survey involving 818 interviewees was conducted in two districts of the Afar Region, Ethiopia. In addition, two focus group discussions (FGDs) were conducted in each of the study areas, one with men and the other with women.</p> <p>Results</p> <p>Of the 818 interviewees [357 (43.6%) females and 461 (56.4%) males], 742 (90.7%) reported that they had knowledge of cervical TBL, mentioning that swelling(s) on the neck resulting in a lesion and scar are common symptoms. However, only 11 (1.5%) individuals mentioned that bacteria or germs are the causative agents of TBL. Three interviewees and a male discussant mentioned drinking raw milk as the cause of TBL. A considerable proportion (34.2%) of the interviewees and almost all the discussants suggested herbal medicine as an effective treatment. Male study participants were 1.82 times more likely to have overall knowledge of TBL than female study participants (adjusted OR, 1.82; 95% CI, 1.32 to 2.51, p < 0.001).</p> <p>Conclusion</p> <p>The pastoral community members in the study areas had little biomedical knowledge of the cause, the source of infection and the transmission route of cervical TBL. Furthermore, most community members believed that herbal medicines are the most effective treatment for TBL. Therefore, TB control programs in the Afar Region require the incorporation of public health education introducing current biomedical knowledge of the disease. In addition, further studies are important to elucidate which medicinal plants are used by Afar pastoralists to treat TBL.</p

    Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV

    Get PDF
    We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also presented.Comment: 11 pages, 2 figures, 2 table

    Search for New Physics in e mu X Data at D0 Using Sleuth: A Quasi-Model-Independent Search Strategy for New Physics

    Get PDF
    We present a quasi-model-independent search for the physics responsible for electroweak symmetry breaking. We define final states to be studied, and construct a rule that identifies a set of relevant variables for any particular final state. A new algorithm ("Sleuth") searches for regions of excess in those variables and quantifies the significance of any detected excess. After demonstrating the sensitivity of the method, we apply it to the semi-inclusive channel e mu X collected in 108 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV at the D0 experiment during 1992-1996 at the Fermilab Tevatron. We find no evidence of new high p_T physics in this sample.Comment: 23 pages, 12 figures. Submitted to Physical Review
    corecore