10 research outputs found

    Effects of the electromagnetic field used in hydrocarbon surveys on marine organisms

    Get PDF
    Controlled Source Electromagnetics (CSEM) technology has been used in the exploration for hydrocarbon reservoirs. It consists of an electric dipole source which is towed horizontally 30-50 m above the seabed or 10 m below the surface. As the electromagnetic (EM) signal propagates through the subsurface it may affect marine organisms that are electro- or magneto-sensitive. A device simulating these conditions (corresponding to three different exposure levels, low, strong, near field) was built to test the effect of EM on marine organisms in laboratory conditions.) Sandeel (Ammodytes tobianus) adults were filmed during a 15-minute near-field EM exposure but showed no significant changes in their behavior, nor any increased mortality. Haddock juveniles (Melanogrammus aeglefinus) were first exposed for 15 minutes to either one of the three EM levels then filmed and tested for magnetic orientation. None of the treatments caused mortality in fish. Juvenile haddock showed significant orientation according to the magnetic field but only after exposure to low and strong EM fields. They also showed a significantly reduced swimming speed following exposure to EM with intensities equivalent to distances of 100 (strong) and 1000 m (low) from the source with an average reduction in speed of 24%. Mean instantaneous swimming velocities of haddock decreased from 1.18 pixel/s (control) to 0.86 and 0.80 pixel/s after exposure to low and strong field levels respectively (GLM estimates), representing speed reductions of 27% and 32% after exposure to each respective level. Changes in swimming speed may affect dispersal of juveniles. However, it is unknown whether the decrease was a physiological or behavioural response. Therefore, it is not possible to make unequivocal conclusions about detrimental effects of CSEM at the population level.publishedVersio

    The Long-Term Risk of Knee Arthroplasty in Patients with Arthroscopically Verified Focal Cartilage Lesions: A Linkage Study with the Norwegian Arthroplasty Register, 1999 to 2020

    Get PDF
    Background: Focal cartilage lesions are common in the knee. The risk of later ipsilateral knee arthroplasty remains unknown. The purposes of the present study were to evaluate the long-term cumulative risk of knee arthroplasty after arthroscopic identification of focal cartilage lesions in the knee, to investigate the risk factors for subsequent knee arthroplasty, and to estimate the subsequent cumulative risk of knee arthroplasty compared with that in the general population. Methods: Patients who had undergone surgical treatment of focal cartilage lesions at 6 major Norwegian hospitals between 1999 and 2012 were identified. The inclusion criteria were an arthroscopically classified focal cartilage lesion in the knee, an age of ≥18 years at the time of surgery, and available preoperative patient-reported outcomes (PROMs). The exclusion criteria were osteoarthritis or “kissing lesions” at the time of surgery. Demographic data, later knee surgery, and PROMs were collected with use of a questionnaire. A Cox regression model was used to adjust for and investigate the impact of risk factors, and Kaplan-Meier analysis was performed to estimate cumulative risk. The risk of knee arthroplasty in the present cohort was compared with that in the age-matched general Norwegian population. Results: Of the 516 patients who were eligible, 322 patients (328 knees) consented to participate. The mean age at the time of the index procedure was 36.8 years, and the mean duration of follow-up was 19.8 years. The 20-year cumulative risk of knee arthroplasty in the cartilage cohort was 19.1% (95% CI, 14.6% to 23.6%). Variables that had an impact on the risk of knee arthroplasty included an ICRS grade of 3 to 4 (hazard ratio [HR], 3.1; 95% CI, 1.1 to 8.7), an age of ≥40 years at time of cartilage surgery (HR, 3.7; 95% CI, 1.8 to 7.7), a BMI of 25 to 29 kg/m2 (HR, 3.9; 95% CI, 1.7 to 9.0), a BMI of ≥30 kg/m2 (HR, 5.9; 95% CI, 2.4 to 14.3) at the time of follow-up, autologous chondrocyte implantation (ACI) at the time of the index procedure (HR, 3.4; 95% CI, 1.0 to 11.4), >1 focal cartilage lesion (HR, 2.1; 95% CI, 1.1 to 3.7), and a high preoperative visual analog scale (VAS) score for pain at the time of the index procedure (HR, 1.1; 95% CI, 1.0 to 1.1). The risk ratio of later knee arthroplasty in the cartilage cohort as compared with the age-matched general Norwegian population was 415.7 (95% CI, 168.8 to 1,023.5) in the 30 to 39-year age group. Conclusions: In the present study, we found that the 20-year cumulative risk of knee arthroplasty after a focal cartilage lesion in the knee was 19%. Deep lesions, higher age at the time of cartilage surgery, high BMI at the time of follow-up, ACI, and >1 cartilage lesion were associated with a higher risk of knee arthroplasty.publishedVersio

    Effects of the electromagnetic field used in hydrocarbon surveys on marine organisms

    Get PDF
    Controlled Source Electromagnetics (CSEM) technology has been used in the exploration for hydrocarbon reservoirs. It consists of an electric dipole source which is towed horizontally 30-50 m above the seabed or 10 m below the surface. As the electromagnetic (EM) signal propagates through the subsurface it may affect marine organisms that are electro- or magneto-sensitive. A device simulating these conditions (corresponding to three different exposure levels, low, strong, near field) was built to test the effect of EM on marine organisms in laboratory conditions.) Sandeel (Ammodytes tobianus) adults were filmed during a 15-minute near-field EM exposure but showed no significant changes in their behavior, nor any increased mortality. Haddock juveniles (Melanogrammus aeglefinus) were first exposed for 15 minutes to either one of the three EM levels then filmed and tested for magnetic orientation. None of the treatments caused mortality in fish. Juvenile haddock showed significant orientation according to the magnetic field but only after exposure to low and strong EM fields. They also showed a significantly reduced swimming speed following exposure to EM with intensities equivalent to distances of 100 (strong) and 1000 m (low) from the source with an average reduction in speed of 24%. Mean instantaneous swimming velocities of haddock decreased from 1.18 pixel/s (control) to 0.86 and 0.80 pixel/s after exposure to low and strong field levels respectively (GLM estimates), representing speed reductions of 27% and 32% after exposure to each respective level. Changes in swimming speed may affect dispersal of juveniles. However, it is unknown whether the decrease was a physiological or behavioural response. Therefore, it is not possible to make unequivocal conclusions about detrimental effects of CSEM at the population level

    Alien plants, animals, fungi and algae in Norway: an inventory of neobiota

    No full text
    We present the results of an inventory and status assessment of alien species in Norway. The inventory covered all known multicellular neobiota, 2496 in total, 1039 of which were classified as naturalised. The latter constitute c. 3% of all species known to be stably reproducing in Norway. These figures are higher than expected from Norway’s latitude, which may be due a combination of climatic and historical factors, as well as sampling effort. Most of the naturalised neobiota were plants (71%),followed by animals (21%) and fungi (8%). The main habitat types colonised were open lowlands (79%), urban environments (52%) and woodlands (42%). The main areas of origin were Europe (67%), North America (15%) and Asia (13%). For most taxa, the rate of novel introductions seems to have been increasing during recent decades. Within Norway, the number of alien species recorded per county was negatively correlated with latitude and positively correlated with human population density. In the high-Arctic territories under Norwegian sovereignty, i.e. Svalbard and Jan Mayen, 104 alien species were recorded, of which 5 were naturalised

    A családi szerepek és a szocializáció változásának bemutatása

    Get PDF
    Célom a dolgozattal és a kutatással, hogy rávilágítsak településünk gyermekinek szocializációjának buktatóihoz vezető problémákra, utat találjak az esetleges megoldáshoz, a problémák kiküszöböléséhez, és ezzel tudatosabban tudjak részt vállalni a problémás gyermekek szocializálásában, közösségformálásában. Munkám során abból indultam ki, hogy az ember szükségszerűen kapcsolatba kerül a közösségi életformával, mindenekelőtt családja van és óvodai, majd iskolai keretek között tanul. Dolgozatomban azt elemeztem, hogy milyen formában lehet létjogosultsága a közösségeknek a szocializáció során, hogyan valósul meg a közösségi nevelés a családban és az óvodai csoportban. A téma feldolgozása során kutattam, megfigyeltem, milyen a szülők nevelési attitűdje, hogyan viszonyulnak a szocializációhoz (óvodai szokásrendszerhez). Milyen a gyermekek viszonya egymáshoz (más-más családi háttérből érkező gyermekek szocializációja). Milyen módon befolyásolja a média hatása a szocializációt.BSc/BAÓvodapedagógu

    Alien species in Norway: results from quantitative ecological impact assessments

    No full text
    1. Due to globalisation, trade and transport, the spread of alien species is increasing dramatically. Some alien species become ecologically harmful by threatening native biota. This can lead to irreversible changes in local biodiversity and ecosystem functioning, and, ultimately, to biotic homogenisation. 2. We risk-assessed all alien plants, animals, fungi and algae, within certain delimitations, that are known to reproduce in Norway. Mainland Norway and the Arctic archipelago of Svalbard plus Jan Mayen were treated as separate assessment areas. Assessments followed the Generic Ecological Impact Assessment of Alien Species (GEIAA) protocol, which uses a fully quantitative set of criteria. 3. A total of 1519 species were risk-assessed, of which 1183 were species reproducing in mainland Norway. Among these, 9% were assessed to have a severe impact, 7% high impact, 7% potentially high impact, and 49% low impact, whereas 29% had no known impact. In Svalbard, 16 alien species were reproducing, one of which with a severe impact. 4. The impact assessments also covered 319 so-called door-knockers, i.e. species that are likely to establish in Norway within 50 years, and 12 regionally alien species. Of the door-knockers, 8% and 10% were assessed to have a severe and high impact, respectively. 5. The impact category of most species was driven by negative interactions with native species, transformation of threatened ecosystems, or genetic contamination. The proportion of alien species with high or severe impact varied significantly across the different pathways of introduction, taxonomic groups, time of introduction, and the environments colonised, but not across continents of origin. 6. Given the large number of alien species reproducing in Norway and the preponderance of species with low impact, it is neither realistic nor necessary to eradicate all of them. Our results can guide management authorities in two ways. First, the use of quantitative assessment criteria facilitates the prioritisation of management resources across species. Second, the background information collected for each species, such as introduction pathways, area of occupancy and ecosystems affected, helps designing appropriate management measures

    Alien species in Norway: Results from quantitative ecological impact assessments

    No full text
    1. Due to globalisation, trade and transport, the spread of alien species is increasing dramatically. Some alien species become ecologically harmful by threatening native biota. This can lead to irreversible changes in local biodiversity and ecosystem functioning, and, ultimately, to biotic homogenisation. 2. We risk-assessed all alien plants, animals, fungi and algae, within certain delimitations, that are known to reproduce in Norway. Mainland Norway and the Arctic archipelago of Svalbard plus Jan Mayen were treated as separate assessment areas. Assessments followed the Generic Ecological Impact Assessment of Alien Species (GEIAA) protocol, which uses a fully quantitative set of criteria. 3. A total of 1519 species were risk-assessed, of which 1183 were species reproducing in mainland Norway. Among these, 9% were assessed to have a severe impact, 7% high impact, 7% potentially high impact, and 49% low impact, whereas 29% had no known impact. In Svalbard, 16 alien species were reproducing, one of which with a severe impact. 4. The impact assessments also covered 319 so-called door-knockers, i.e. species that are likely to establish in Norway within 50 years, and 12 regionally alien species. Of the door-knockers, 8% and 10% were assessed to have a severe and high impact, respectively. 5. The impact category of most species was driven by negative interactions with native species, transformation of threatened ecosystems, or genetic contamination. The proportion of alien species with high or severe impact varied significantly across the different pathways of introduction, taxonomic groups, time of introduction, and the environments colonised, but not across continents of origin. 6. Given the large number of alien species reproducing in Norway and the preponderance of species with low impact, it is neither realistic nor necessary to eradicate all of them. Our results can guide management authorities in two ways. First, the use of quantitative assessment criteria facilitates the prioritisation of management resources across species. Second, the background information collected for each species, such as introduction pathways, area of occupancy and ecosystems affected, helps designing appropriate management measures

    Fremmede arter i Norge: resultater fra kvantitative økologiske risikovurderinger

    No full text
    1. Due to globalisation, trade and transport, the spread of alien species is increasing dramatically. Some alien species become ecologically harmful by threatening native biota. This can lead to irreversible changes in local biodiversity and ecosystem functioning, and, ultimately, to biotic homogenisation. 2. We risk-assessed all alien plants, animals, fungi and algae, within certain delimitations, that are known to reproduce in Norway. Mainland Norway and the Arctic archipelago of Svalbard plus Jan Mayen were treated as separate assessment areas. Assessments followed the Generic Ecological Impact Assessment of Alien Species (GEIAA) protocol, which uses a fully quantitative set of criteria. 3. A total of 1519 species were risk-assessed, of which 1183 were species reproducing in mainland Norway. Among these, 9% were assessed to have a severe impact, 7% high impact, 7% potentially high impact, and 49% low impact, whereas 29% had no known impact. In Svalbard, 16 alien species were reproducing, one of which with a severe impact. 4. The impact assessments also covered 319 so-called door-knockers, i.e. species that are likely to establish in Norway within 50 years, and 12 regionally alien species. Of the door-knockers, 8% and 10% were assessed to have a severe and high impact, respectively. 5. The impact category of most species was driven by negative interactions with native species, transformation of threatened ecosystems, or genetic contamination. The proportion of alien species with high or severe impact varied significantly across the different pathways of introduction, taxonomic groups, time of introduction, and the environments colonised, but not across continents of origin. 6. Given the large number of alien species reproducing in Norway and the preponderance of species with low impact, it is neither realistic nor necessary to eradicate all of them. Our results can guide management authorities in two ways. First, the use of quantitative assessment criteria facilitates the prioritisation of management resources across species. Second, the background information collected for each species, such as introduction pathways, area of occupancy and ecosystems affected, helps designing appropriate management measures.1. Globalisering, handel og transport fører til en dramatisk økning i spredningen av fremmede arter. Noen fremmede arter er skadelige og truer det stedegne naturmangfoldet. Lokalt kan dette medføre irreversible endringer i det lokale biologiske mangfoldet og økosystemenes funksjon; globalt en homogenisering av artssammensetningen. 2. Vi har gjennomført risikovurderinger av alle fremmede planter, dyr, sopper og alger som reproduserer i Norge og oppfyller visse avgrensninger. Svalbard og Jan Mayen ble behandla som et eget vurderingsområde, adskilt fra Fastlands‐Norge. Risikovurderingene ble gjort i tråd med GEIAA (Generic Ecological Impact Assessment of Alien Species), som benytter et rent kvantitativt kriteriesett. 3. Totalt ble 1519 arter risikovurdert, hvorav 1183 reproduserte i Fastlands‐Norge. Av disse ble 9 % vurdert til å utgjøre en svært høy risiko, 7 % en høy risiko, 7 % en potensielt høy risiko, 49 % en lav risiko og 29 % ingen kjent risiko. På Svalbard forekom 16 reproduserende fremmede arter, hvorav én med svært høy risiko. 4. Risikovurderingene omfatta også 319 såkalte dørstokkarter, dvs. fremmede arter som antas å kunne etablere seg i Norge innen 50 år, samt 12 regionalt fremmede arter. Blant dørstokkartene ble 8 % og 10 % vurdert til å utgjøre en svært høy respektive høy risiko. 5. For de fleste arter ble risikokategorien bestemt av artenes interaksjoner med stedegne arter, tilstandsendringer i trua naturtyper eller genetisk forurensning. Andelen av fremmede arter med høy eller svært høy risiko varierte signifikant på tvers av ulike introduksjonsveier, artsgrupper, tidspunkt for introduksjon og koloniserte naturtyper, men ikke på tvers av opphavsområder. 6. Gitt det store antallet av fremmede arter som reproduserer i Norge, og overvekten av arter som har lav risiko, er det verken realistisk eller nødvendig å utrydde alle. Resultatene våre kan hjelpe forvaltningsmyndighetene på to måter. For det første gjør bruken av kvantitative kriterier det lettere å prioritere ressurser på tvers av arter. For det andre kan passende forvaltningstiltak utarbeides på grunnlag av den innsamla bakgrunnsinformasjonen om artene, f.eks. deres spredningsveier, forekomstareal og berørte naturtyper.publishedVersionpublishedVersio

    Alien species in Norway: results from quantitative ecological impact assessments

    No full text
    1. Due to globalisation, trade and transport, the spread of alien species is increasing dramatically. Some alien species become ecologically harmful by threatening native biota. This can lead to irreversible changes in local biodiversity and ecosystem functioning, and, ultimately, to biotic homogenisation. 2. We risk-assessed all alien plants, animals, fungi and algae, within certain delimitations, that are known to reproduce in Norway. Mainland Norway and the Arctic archipelago of Svalbard plus Jan Mayen were treated as separate assessment areas. Assessments followed the Generic Ecological Impact Assessment of Alien Species (GEIAA) protocol, which uses a fully quantitative set of criteria. 3. A total of 1519 species were risk-assessed, of which 1183 were species reproducing in mainland Norway. Among these, 9% were assessed to have a severe impact, 7% high impact, 7% potentially high impact, and 49% low impact, whereas 29% had no known impact. In Svalbard, 16 alien species were reproducing, one of which with a severe impact. 4. The impact assessments also covered 319 so-called door-knockers, i.e. species that are likely to establish in Norway within 50 years, and 12 regionally alien species. Of the door-knockers, 8% and 10% were assessed to have a severe and high impact, respectively. 5. The impact category of most species was driven by negative interactions with native species, transformation of threatened ecosystems, or genetic contamination. The proportion of alien species with high or severe impact varied significantly across the different pathways of introduction, taxonomic groups, time of introduction, and the environments colonised, but not across continents of origin. 6. Given the large number of alien species reproducing in Norway and the preponderance of species with low impact, it is neither realistic nor necessary to eradicate all of them. Our results can guide management authorities in two ways. First, the use of quantitative assessment criteria facilitates the prioritisation of management resources across species. Second, the background information collected for each species, such as introduction pathways, area of occupancy and ecosystems affected, helps designing appropriate management measures

    Alien species in Norway: results from quantitative ecological impact assessments

    No full text
    1. Due to globalisation, trade and transport, the spread of alien species is increasing dramatically. Some alien species become ecologically harmful by threatening native biota. This can lead to irreversible changes in local biodiversity and ecosystem functioning, and, ultimately, to biotic homogenisation. 2. We risk-assessed all alien plants, animals, fungi and algae, within certain delimitations, that are known to reproduce in Norway. Mainland Norway and the Arctic archipelago of Svalbard plus Jan Mayen were treated as separate assessment areas. Assessments followed the Generic Ecological Impact Assessment of Alien Species (GEIAA) protocol, which uses a fully quantitative set of criteria. 3. A total of 1519 species were risk-assessed, of which 1183 were species reproducing in mainland Norway. Among these, 9% were assessed to have a severe impact, 7% high impact, 7% potentially high impact, and 49% low impact, whereas 29% had no known impact. In Svalbard, 16 alien species were reproducing, one of which with a severe impact. 4. The impact assessments also covered 319 so-called door-knockers, i.e. species that are likely to establish in Norway within 50 years, and 12 regionally alien species. Of the door-knockers, 8% and 10% were assessed to have a severe and high impact, respectively. 5. The impact category of most species was driven by negative interactions with native species, transformation of threatened ecosystems, or genetic contamination. The proportion of alien species with high or severe impact varied significantly across the different pathways of introduction, taxonomic groups, time of introduction, and the environments colonised, but not across continents of origin. 6. Given the large number of alien species reproducing in Norway and the preponderance of species with low impact, it is neither realistic nor necessary to eradicate all of them. Our results can guide management authorities in two ways. First, the use of quantitative assessment criteria facilitates the prioritisation of management resources across species. Second, the background information collected for each species, such as introduction pathways, area of occupancy and ecosystems affected, helps designing appropriate management measures
    corecore