10 research outputs found

    Primary Black Hole Spin in OJ 287 as Determined by the General Relativity Centenary Flare

    Get PDF
    OJ 287 is a quasi-periodic quasar with roughly 12 year optical cycles. It displays prominent outbursts that are predictable in a binary black hole model. The model predicted a major optical outburst in 2015 December. We found that the outburst did occur within the expected time range, peaking on 2015 December 5 at magnitude 12.9 in the optical R -band. Based on Swift /XRT satellite measurements and optical polarization data, we find that it included a major thermal component. Its timing provides an accurate estimate for the spin of the primary black hole, ##IMG## [http://ej.iop.org/images/2041-8205/819/2/L37/apjl523055ieqn1.gif] i=0.313pm0.01i =0.313pm 0.01 . The present outburst also confirms the established general relativistic properties of the system such as the loss of orbital energy to gravitational radiation at the 2% accuracy level, and it opens up the possibility of testing the black hole no-hair theorem with 10% accuracy during the present decade.Peer reviewe

    A Search for QPOs in the Blazar OJ287: Preliminary Results from the 2015/2016 Observing Campaign

    Get PDF
    We analyse the light curve in the R band of the blazar OJ287, gathered during the 2015/2016 observing season. We did a search for quasi-periodic oscillations (QPOs) using several methods over a wide range of timescales. No statistically significant periods were found in the high-frequency domain both in the ground-based data and in Kepler observations. In the longer-period domain, the Lomb–Scargle periodogram revealed several peaks above the 99% significance level. The longest one—about 95 days—corresponds to the innermost stable circular orbit (ISCO) period of the more massive black hole. The 43-day period could be an alias, or it can be attributed to accretion in the form of a two-armed spiral wave.Peer reviewe

    Host galaxy magnitude of OJ 287 from its colours at minimum light

    Get PDF
    OJ 287 is a BL Lacertae type quasar in which the active galactic nucleus (AGN) outshines the host galaxy by an order of magnitude. The only exception to this may be at minimum light when the AGN activity is so low that the host galaxy may make quite a considerable contribution to the photometric intensity of the source. Such a dip or a fade in the intensity of OJ 287 occurred in 2017 November, when its brightness was about 1.75 mag lower than the recent mean level. We compare the observations of this fade with similar fades in OJ 287 observed earlier in 1989, 1999, and 2010. It appears that there is a relatively strong reddening of the B-V colours of OJ 287 when its V-band brightness drops below magnitude 17. Similar changes are also seen in V-R, V-I, and R-I colours during these deep fades. These data support the conclusion that the total magnitude of the host galaxy is V = 18.0 ± 0.3, corresponding to MK =-26.5 ± 0.3 in the K-band. This is in agreement with the results, obtained using the integrated surface brightness method, from recent surface photometry of the host. These results should encourage us to use the colour separation method also in other host galaxies with strongly variable AGN. In the case of OJ 287, both the host galaxy and its central black hole are among the biggest known, and its position in the black hole mass-galaxy mass diagram lies close to the mean correlation

    A Search for QPOs in the Blazar OJ287: Preliminary Results from the 2015/2016 Observing Campaign

    Get PDF
    We analyse the light curve in the R band of the blazar OJ287, gathered during the 2015/2016 observing season. We did a search for quasi-periodic oscillations (QPOs) using several methods over a wide range of timescales. No statistically significant periods were found in the high-frequency domain both in the ground-based data and in Kepler observations. In the longer-period domain, the Lomb–Scargle periodogram revealed several peaks above the 99% significance level. The longest one—about 95 days—corresponds to the innermost stable circular orbit (ISCO) period of the more massive black hole. The 43-day period could be an alias, or it can be attributed to accretion in the form of a two-armed spiral wave

    V392 Persei: a γ-ray bright nova eruption from a known dwarf nova

    Get PDF
    V392 Persei is a known dwarf nova (DN) that underwent a classical nova eruption in 2018. Here we report ground-based optical, Swift UV and X-ray, and Fermi-LAT γ-ray observations following the eruption for almost three years. V392 Per is one of the fastest evolving novae yet observed, with a t2 decline time of 2 days. Early spectra present evidence for multiple and interacting mass ejections, with the associated shocks driving both the γ-ray and early optical luminosity. V392 Per entered Sun-constraint within days of eruption. Upon exit, the nova had evolved to the nebular phase, and we saw the tail of the super-soft X-ray phase. Subsequent optical emission captured the fading ejecta alongside a persistent narrow line emission spectrum from the accretion disk. Ongoing hard X-ray emission is characteristic of a standing accretion shock in an intermediate polar. Analysis of the optical data reveals an orbital period of 3.230 ± 0.003 days, but we see no evidence for a white dwarf (WD) spin period. The optical and X-ray data suggest a high mass WD, the pre-nova spectral energy distribution (SED) indicates an evolved donor, and the post-nova SED points to a high mass accretion rate. Following eruption, the system has remained in a nova-like high mass transfer state, rather than returning to the pre-nova DN low mass transfer configuration. We suggest that this high state is driven by irradiation of the donor by the nova eruption. In many ways, V392 Per shows similarity to the well-studied nova and DN GK Persei

    Host galaxy magnitude of OJ 287 from its colours at minimum light

    Get PDF
    OJ 287 is a BL Lacertae type quasar in which the active galactic nucleus (AGN) outshines the host galaxy by an order of magnitude. The only exception to this may be at minimum light when the AGN activity is so low that the host galaxy may make quite a considerable contribution to the photometric intensity of the source. Such a dip or a fade in the intensity of OJ 287 occurred in 2017 November, when its brightness was about 1.75 mag lower than the recent mean level. We compare the observations of this fade with similar fades in OJ 287 observed earlier in 1989, 1999, and 2010. It appears that there is a relatively strong reddening of the B-V colours of OJ 287 when its V-band brightness drops below magnitude 17. Similar changes are also seen in V-R, V-I, and R-I colours during these deep fades. These data support the conclusion that the total magnitude of the host galaxy is V = 18.0 ± 0.3, corresponding to MK =-26.5 ± 0.3 in the K-band. This is in agreement with the results, obtained using the integrated surface brightness method, from recent surface photometry of the host. These results should encourage us to use the colour separation method also in other host galaxies with strongly variable AGN. In the case of OJ 287, both the host galaxy and its central black hole are among the biggest known, and its position in the black hole mass-galaxy mass diagram lies close to the mean correlation

    Primary black hole spin in oj 287 AS determined by the general relativity centenary flare

    No full text
    OJ 287 is a quasi-periodic quasar with roughly 12 year optical cycles. It displays prominent outbursts that are predictable in a binary black hole model. The model predicted a major optical outburst in 2015 December. We found that the outburst did occur within the expected time range, peaking on 2015 December 5 at magnitude 12.9 in the optical R-band. Based on Swift/XRT satellite measurements and optical polarization data, we find that it included a major thermal component. Its timing provides an accurate estimate for the spin of the primary black hole, . The present outburst also confirms the established general relativistic properties of the system such as the loss of orbital energy to gravitational radiation at the 2% accuracy level, and it opens up the possibility of testing the black hole no-hair theorem with 10% accuracy during the present decade. © 2016. The American Astronomical Society. All rights reserved

    A search for QPOs in the blazar OJ287: Preliminary results from the 2015/2016 observing campaign

    No full text
    We analyse the light curve in the R band of the blazar OJ287, gathered during the 2015/2016 observing season. We did a search for quasi-periodic oscillations (QPOs) using several methods over a wide range of timescales. No statistically significant periods were found in the high-frequency domain both in the ground-based data and in Kepler observations. In the longer-period domain, the Lomb-Scargle periodogram revealed several peaks above the 99% significance level. The longest one-about 95 days-corresponds to the innermost stable circular orbit (ISCO) period of the more massive black hole. The 43-day period could be an alias, or it can be attributed to accretion in the form of a two-armed spiral wave. © 2016 by the authors

    Stochastic modeling of multiwavelength variability of the classical BL Lac object OJ 287 on timescales ranging from decades to hours

    Get PDF
    We present the results of our power spectral density analysis for the BL Lac object OJ\,287, utilizing the {\it Fermi}-LAT survey at high-energy ?-rays, {\it Swift}-XRT in X-rays, several ground-based telescopes and the {\it Kepler} satellite in the optical, and radio telescopes at GHz frequencies. The light curves are modeled in terms of continuous-time auto-regressive moving average (CARMA) processes. Owing to the inclusion of the {\it Kepler} data, we were able to construct \emph{for the first time} the optical variability power spectrum of a blazar without any gaps across ?6 dex in temporal frequencies. Our analysis reveals that the radio power spectra are of a colored-noise type on timescales ranging from tens of years down to months, with no evidence for breaks or other spectral features. The overall optical power spectrum is also consistent with a colored noise on the variability timescales ranging from 117 years down to hours, with no hints of any quasi-periodic oscillations. The X-ray power spectrum resembles the radio and optical power spectra on the analogous timescales ranging from tens of years down to months. Finally, the ?-ray power spectrum is noticeably different from the radio, optical, and X-ray power spectra of the source: we have detected a characteristic relaxation timescale in the {\it Fermi}-LAT data, corresponding to ?150\,days, such that on timescales longer than this, the power spectrum is consistent with uncorrelated (white) noise, while on shorter variability timescales there is correlated (colored) noise.by Navpreet Kaur et al
    corecore