170 research outputs found

    Auditory Spatial Acuity Approximates the Resolving Power of Space-Specific Neurons

    Get PDF
    The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination

    Radiation-Induced Bystander Effects in Cultured Human Stem Cells

    Get PDF
    The radiation-induced "bystander effect" (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed.Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05).These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies

    Regulation of early signaling and gene expression in the α-particle and bystander response of IMR-90 human fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is well established. To understand early signaling and gene regulation in bystander cells, we used a bio-informatics approach, measuring global gene expression at 30 minutes and signaling pathways between 30 minutes and 4 hours after exposure to α-particles in IMR-90 fibroblasts.</p> <p>Methods</p> <p>We used whole human genome microarrays and real time quantitative PCR to measure and validate gene expression. Microarray analysis was done using BRB-Array Tools; pathway and ontology analyses were done using Ingenuity Pathway Analysis and PANTHER, respectively. We studied signaling in irradiated and bystander cells using immunoblotting and semi-quantitative image analysis.</p> <p>Results</p> <p>Gene ontology suggested signal transduction and transcriptional regulation responding 30 minutes after treatment affected cell structure, motility and adhesion, and interleukin synthesis. We measured time-dependent expression of genes controlled by the NF-ÎșB pathway; matrix metalloproteinases 1 and 3; <it/>chemokine ligands 2, 3 and 5 and <it/>interleukins 1ÎČ, 6 and 33. There was an increased response of this set of genes 30 minutes after treatment and another wave of induction at 4 hours. We investigated AKT-GSK3ÎČ signaling and found both AKT and GSK3ÎČ are hyper-phosphorylated 30 minutes after irradiation and this effect is maintained through 4 hours. In bystander cells, a similar response was seen with a delay of 30 minutes. We proposed a network model where the observed decrease in phosphorylation of ÎČ-catenin protein after GSK3ÎČ dependent inactivation can trigger target gene expression at later times after radiation exposure</p> <p>Conclusions</p> <p>These results are the first to show that the radiation induced bystander signal induces a widespread gene expression response at 30 minutes after treatment and these changes are accompanied by modification of signaling proteins in the PI3K-AKT-GSK3ÎČ pathway.</p

    Global gene expression analyses of bystander and alpha particle irradiated normal human lung fibroblasts: Synchronous and differential responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is now well established. It raises concerns for the interpretation of risks arising from exposure to low doses of ionizing radiation. However, the regulatory mechanisms involved in the bystander response have not been well elucidated. To provide insight into the signaling pathways responding in bystanders, we have measured global gene expression four hours after bystander and direct alpha particle exposure of primary human lung fibroblasts.</p> <p>Results</p> <p>Although common p53-regulated radiation response genes like <it>CDKN1A </it>were expressed at elevated levels in the directly exposed cultures, they showed little or no change in the bystanders. In contrast, genes regulated by NFÎșB, such as <it>PTGS2 </it>(cyclooxygenase-2), <it>IL8 </it>and <it>BCL2A1</it>, responded nearly identically in bystander and irradiated cells. This trend was substantiated by gene ontology and pathway analyses of the microarray data, which suggest that bystander cells mount a full NFÎșB response, but a muted or partial p53 response. In time-course analyses, quantitative real-time PCR measurements of <it>CDKN1A </it>showed the expected 4-hour peak of expression in irradiated but not bystander cells. In contrast, <it>PTGS2, IL8 </it>and <it>BCL2A1 </it>responded with two waves of expression in both bystander and directly irradiated cells, one peaking at half an hour and the other between four and six hours after irradiation.</p> <p>Conclusion</p> <p>Two major transcriptional hubs that regulate the direct response to ionizing radiation are also implicated in regulation of the bystander response, but to dramatically different degrees. While activation of the p53 response pathway is minimal in bystander cells, the NFÎșB response is virtually identical in irradiated and bystander cells. This alteration in the balance of signaling is likely to lead to different outcomes in irradiated cells and their bystanders, perhaps leading to greater survival of bystanders and increased risk from any long-term damage they have sustained.</p

    H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues

    Get PDF
    A sequence variant of histone H2A called H2AX is one of the key components of chromatin involved in DNA damage response induced by different genotoxic stresses. Phosphorylated H2AX (ÎłH2AX) is rapidly concentrated in chromatin domains around DNA double-strand breaks (DSBs) after the action of ionizing radiation or chemical agents and at stalled replication forks during replication stress. ÎłH2AX foci could be easily detected in cell nuclei using immunofluorescence microscopy that allows to use ÎłH2AX as a quantitative marker of DSBs in various applications. H2AX is phosphorylated in situ by ATM, ATR, and DNA-PK kinases that have distinct roles in different pathways of DSB repair. The ÎłH2AX serves as a docking site for the accumulation of DNA repair proteins, and after rejoining of DSBs, it is released from chromatin. The molecular mechanism of ÎłH2AX dephosphorylation is not clear. It is complicated and requires the activity of different proteins including phosphatases and chromatin-remodeling complexes. In this review, we summarize recently published data concerning the mechanisms and kinetics of ÎłH2AX loss in normal cells and tissues as well as in those deficient in ATM, DNA-PK, and DSB repair proteins activity. The results of the latest scientific research of the low-dose irradiation phenomenon are presented including the bystander effect and the adaptive response estimated by ÎłH2AX detection in cells and tissues

    Study of B0_s anti-B0_s oscillations and B0_s lifetimes using hadronic decays of B0_s mesons

    Full text link
    Oscillations of B0s mesons have been studied in samples selected from about 3.5 million hadronic Z decays detected by DELPHI between 1992 and 1995. One analysis uses events in the exclusive decay channels: B0s -> Ds- pi+ or Ds- a1+ and B0s -> anti-D0 K- pi+ or anti-D0 K- a1+, where the D decays are completely reconstructed. In addition, B0s anti-B0s oscillations have been studied in events with an exclusively reconstructed Ds accompanied in the same hemisphere by a high momentum hadron of opposite charge. Combining the two analyses, a limit on the mass difference between the physical B0s states has been obtained: Delta(m_B0s) > 4.0 ps^{-1} at the 95% C.L. with a sensitivity of Delta(m_B0s) = 3.2 ps^{-1}. Using the latter sample of events, the B0s lifetime has been measured and an upper limit on the decay width difference between the two physical B0s states has been obtained: tau(B0s) = 1.53^{+0.16}_{-0.15}(stat.) +/- {0.07}(syst.) ps \Delta\Gamma(B0s)/\Gamma(B0s) < 0.69 at the 95% C.L. The combination of these results with those obtained using Ds+- lepton-+ sample gives: Delta(m_B0s) > 4.9 ps^{-1} at the 95% C.L. with a sensitivity of Delta(m_B0s) = 8.7 ps^{-1}. tau(B0s) = 1.46 +/- 0.11 ps and \Delta\Gamma(B0s)/\Gamma(B0s) < 0.45 at the 95% C.L.Comment: 42 pages, 13 figure
    • 

    corecore