21 research outputs found

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Response of London's urban heat island to a marine air intrusion in an easterly wind regime

    Get PDF
    Numerical simulations are conducted using the Weather Research and Forecast numerical model to examine the effects of a marine air intrusion (including a sea-breeze front), in an easterly wind regime on 7 May 2008, on the structure of London's urban heat island (UHI). A sensitivity study is undertaken to assess how the representation of the urban area of London in the model, with a horizontal grid resolution of 1 km, affects its performance characteristics for the near-surface air temperature, dewpoint depression, and wind fields. No single simulation is found to provide the overall best or worst performance for all the near-surface fields considered. Using a multilayer (rather than single layer or bulk) urban canopy model does not clearly improve the prediction of the intensity of the UHI but it does improve the prediction of its spatial pattern. Providing surface-cover fractions leads to improved predictions of the UHI intensity. The advection of cooler air from the North Sea reduces the intensity of the UHI in the windward suburbs and displaces it several kilometres to the west, in good agreement with observations. Frontal advection across London effectively replaces the air in the urban area. Results indicate that there is a delicate balance between the effects of thermal advection and urbanization on near-surface fields, which depend, inter alia, on the parametrization of the urban canopy and the urban land-cover distribution.Peer reviewedFinal Accepted Versio

    Particulate matter air pollution components and risk for lung cancer.

    No full text
    BACKGROUND: Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence. METHODS: We used data from 14 cohort studies in eight European countries. We geocoded baseline addresses and assessed air pollution with land-use regression models for eight elements (Cu, Fe, K, Ni, S, Si, V and Zn) in size fractions of PM2.5 and PM10. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effect models for meta-analysis. RESULTS: The 245,782 cohort members contributed 3,229,220 person-years at risk. During follow-up (mean, 13.1 years), 1878 incident cases of lung cancer were diagnosed. In the meta-analyses, elevated hazard ratios (HRs) for lung cancer were associated with all elements except V; none was statistically significant. In analyses restricted to participants who did not change residence during follow-up, statistically significant associations were found for PM2.5 Cu (HR, 1.25; 95% CI, 1.01-1.53 per 5 ng/m(3)), PM10 Zn (1.28; 1.02-1.59 per 20 ng/m(3)), PM10 S (1.58; 1.03-2.44 per 200 ng/m(3)), PM10 Ni (1.59; 1.12-2.26 per 2 ng/m(3)) and PM10 K (1.17; 1.02-1.33 per 100 ng/m(3)). In two-pollutant models, associations between PM10 and PM2.5 and lung cancer were largely explained by PM2.5 S. CONCLUSIONS: This study indicates that the association between PM in air pollution and lung cancer can be attributed to various PM components and sources. PM containing S and Ni might be particularly important
    corecore