33 research outputs found

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders

    Does Alzheimer's disease affect hippocampal asymmetry? Evidence from a cross-sectional and longitudinal volumetric MRI study.

    No full text
    OBJECTIVE: To determine whether Alzheimer's disease (AD) is associated with preferential atrophy of either the left or right hippocampus. METHODS: We examined right-left asymmetry in hippocampal volume and atrophy rates in 32 subjects with probable AD and 50 age-matched controls. Hippocampi were measured on two serial volumetric MRI scans using a technique that minimizes laterality bias. RESULTS: We found a non-significant trend for right > left (R > L) asymmetry in controls at both time points (R > L: 1.7%; CI: -0.3-3.7%; p = 0.1). AD subjects showed a similar non-significant trend for R > L asymmetry at baseline (R > L: 1.8%; CI: -1.9-5.5%; p = 0.32), but not at repeat (p = 0.739). Change in R/L ratio between visits in AD patients was significant (p = 0.02). The AD group had significantly higher variance in these ratios than the controls at baseline (p = 0.02), but not repeat (p = 0.06). AD patients had higher atrophy rates than controls (p 0.20). CONCLUSIONS: We report minor R > L asymmetry in hippocampal volumes in controls and present some evidence to suggest that there is a change in the natural R > L asymmetry during the progression of AD

    Mixing omics:combining genetics and metabolomics to study rheumatic diseases

    Get PDF
    Metabolomics is an exciting field in systems biology that provides a direct readout of the biochemical activities taking place within an individual at a particular point in time. Metabolite levels are influenced by many factors, including disease status, environment, medications, diet and, importantly, genetics. Thanks to their dynamic nature, metabolites are useful for diagnosis and prognosis, as well as for predicting and monitoring the efficacy of treatments. At the same time, the strong links between an individual's metabolic and genetic profiles enable the investigation of pathways that underlie changes in metabolite levels. Thus, for the field of metabolomics to yield its full potential, researchers need to take into account the genetic factors underlying the production of metabolites, and the potential role of these metabolites in disease processes. In this Review, the methodological aspects related to metabolomic profiling and any potential links between metabolomics and the genetics of some of the most common rheumatic diseases are described. Links between metabolomics, genetics and emerging fields such as the gut microbiome and proteomics are also discussed
    corecore