10 research outputs found

    Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture

    Get PDF
    The molecular mechanisms underlying the axon arborization of mammalian neurons are poorly understood but are critical for the establishment of functional neural circuits. We identified a pathway defined by two kinases, LKB1 and NUAK1, required for cortical axon branching in vivo. Conditional deletion of LKB1 after axon specification or knockdown of NUAK1 drastically reduced axon branching in vivo, whereas their overexpression was sufficient to increase axon branching. The LKB1-NUAK1 pathway controls mitochondria immobilization in axons. Using manipulation of Syntaphilin, a protein necessary and sufficient to arrest mitochondrial transport specifically in the axon, we demonstrate that the LKB1-NUAK1 kinase pathway regulates axon branching by promoting mitochondria immobilization. Finally, we show that LKB1 and NUAK1 are necessary and sufficient to immobilize mitochondria specifically at nascent presynaptic sites. Our results unravel a link between presynaptic mitochondrial capture and axon branching

    Kinase Interaction Network Expands Functional and Disease Roles of Human Kinases

    Get PDF
    Protein kinases are essential for signal transduction and control of most cellular processes, including metabolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their strong association with diseases, good coverage of their interactions is available for only a fraction of the 535 human kinases. Here, we present a comprehensive mass-spectrometry-based analysis of a human kinase interaction network covering more than 300 kinases. The interaction dataset is a high-quality resource with more than 5,000 previously unreported interactions. We extensively characterized the obtained network and were able to identify previously described, as well as predict new, kinase functional associations, including those of the less well-studied kinases PIM3 and protein O-mannose kinase (POMK). Importantly, the presented interaction map is a valuable resource for assisting biomedical studies. We uncover dozens of kinase-disease associations spanning from genetic disorders to complex diseases, including cancer.Peer reviewe

    Allosteric Antagonist Modulation of TRPV2 by Piperlongumine Impairs Glioblastoma Progression.

    Get PDF
    The use of computational tools to identify biological targets of natural products with anticancer properties and unknown modes of action is gaining momentum. We employed self-organizing maps to deconvolute the phenotypic effects of piperlongumine (PL) and establish a link to modulation of the human transient receptor potential vanilloid 2 (hTRPV2) channel. The structure of the PL-bound full-length rat TRPV2 channel was determined by cryo-EM. PL binds to a transient allosteric pocket responsible for a new mode of anticancer activity against glioblastoma (GBM) in which hTRPV2 is overexpressed. Calcium imaging experiments revealed the importance of Arg539 and Thr522 residues on the antagonistic effect of PL and calcium influx modulation of the TRPV2 channel. Downregulation of hTRPV2 reduces sensitivity to PL and decreases ROS production. Analysis of GBM patient samples associates hTRPV2 overexpression with tumor grade, disease progression, and poor prognosis. Extensive tumor abrogation and long term survival was achieved in two murine models of orthotopic GBM by formulating PL in an implantable scaffold/hydrogel for sustained local therapy. Furthermore, in primary tumor samples derived from GBM patients, we observed a selective reduction of malignant cells in response to PL ex vivo. Our results establish a broadly applicable strategy, leveraging data-motivated research hypotheses for the discovery of novel means tackling cancer

    Multifunctional mRNA-based CAR T cells display promising anti-tumor activity against glioblastoma

    Full text link
    PURPOSE Most chimeric antigen receptor (CAR)-T cell strategies against glioblastoma have demonstrated only modest therapeutic activity and are based on persistent gene modification strategies that have limited transgene capacity, long manufacturing processes and the risk for uncontrollable off-tumor toxicities. mRNA-based T cell modifications are an emerging safe, rapid and cost-effective alternative to overcome these challenges, but are underexplored against glioblastoma. EXPERIMENTAL DESIGN We generated mouse and human mRNA-based multifunctional T cells co-expressing a multitargeting CAR based on the NKG2D receptor and the pro-inflammatory cytokines IL12 and IFNa2 and assessed their anti-glioma activity in vitro and in vivo. RESULTS Compared to T cells that either expressed the CAR or cytokines alone, multifunctional CAR T cells demonstrated increased anti-glioma activity in vitro and in vivo in three orthotopic immunocompetent mouse glioma models without signs of toxicity. Mechanistically, the co-expression of IL12 and IFNa2 in addition to the CAR promoted a pro-inflammatory tumor microenvironment and reduced T cell exhaustion as demonstrated by ex vivo immune phenotyping, cytokine profiling and RNA sequencing. The translational potential was demonstrated by image-based single-cell analyses of mRNA-modified T cells in patient glioblastoma samples with a complex cellular microenvironment. This revealed strong anti-glioma activity of human mRNA-based multifunctional NKG2D CAR T cells co-expressing IL12 and IFNa2 whereas T cells that expressed either the CAR or cytokines alone did not demonstrate comparable anti-glioma activity. CONCLUSION These data provide a robust rationale for future clinical studies with mRNA-based multifunctional CAR T cells to treat malignant brain tumors

    Targeting the Siglec-sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma

    Full text link
    Glioblastoma (GBM) is the most aggressive form of primary brain tumor, for which effective therapies are urgently needed. Cancer cells are capable of evading clearance by phagocytes such as microglia- and monocyte-derived cells through engaging tolerogenic programs. Here, we found that high expression of sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) correlates with reduced survival in patients with GBM. Using microglia- and monocyte-derived cell-specific knockouts of Siglec-E, the murine functional homolog of Siglec-9, together with single-cell RNA sequencing, we demonstrated that Siglec-E inhibits phagocytosis by these cells, thereby promoting immune evasion. Loss of Siglec-E on monocyte-derived cells further enhanced antigen cross-presentation and production of pro-inflammatory cytokines, which resulted in more efficient T cell priming. This bridging of innate and adaptive responses delayed tumor growth and resulted in prolonged survival in murine models of GBM. Furthermore, we showed the combinatorial activity of Siglec-E blockade and other immunotherapies demonstrating the potential for targeting Siglec-9 as a treatment for patients with GBM

    Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries

    No full text
    The reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) is usually achieved by exogenous induction of transcription by factors acting in the nucleus. In contrast, during development, signaling pathways initiated at the membrane induce differentiation. The central idea of this study is to identify antibodies that can catalyze cellular dedifferentiation and nuclear reprogramming by acting at the cell surface. We screen a lentiviral library encoding similar to 100 million secreted and membrane-bound single-chain antibodies and identify antibodies that can replace either Sox2 and Myc (c-Myc) or Oct4 during reprogramming of mouse embryonic fibroblasts into iPSCs. We show that one Sox2-replacing antibody antagonizes the membrane-associated protein Basp1, thereby de-repressing nuclear factors WT1, Esrrb and Lin28a (Lin28) independent of Sox2. By manipulating this pathway, we identify three methods to generate iPSCs. Our results establish unbiased selection from autocrine combinatorial antibody libraries as a robust method to discover new biologics and uncover membrane-to-nucleus signaling pathways that regulate pluripotency and cell fate
    corecore