85 research outputs found

    Developmental Controls are Re-Expressed during Induction of Neurogenesis in the Neocortex of Young Adult Mice

    Get PDF
    Whether induction of low-level neurogenesis in normally non-neurogenic regions of the adult brain mimics aspects of developmental neurogenesis is currently unknown. Previously, we and others identified that biophysically induced, neuron subtype-specific apoptosis in mouse neocortex results in induction of neurogenesis of limited numbers of subtype-appropriate projection neurons with axonal projections to either thalamus or spinal cord, depending on the neuron subtype activated to undergo targeted apoptosis. Here, we test the hypothesis that developmental genes from embryonic corticogenesis are re-activated, and that some of these genes might underlie induction of low-level adult neocortical neurogenesis. We directly investigated this hypothesis via microarray analysis of microdissected regions of young adult mouse neocortex undergoing biophysically activated targeted apoptosis of neocortical callosal projection neurons. We compared the microarray results identifying differentially expressed genes with public databases of embryonic developmental genes. We find that, following activation of subtype-specific neuronal apoptosis, three distinct sets of normal developmental genes are selectively re-expressed in neocortical regions of induced neurogenesis in young adult mice: (1) genes expressed by subsets of progenitors and immature neurons in the developing ventricular and/or subventricular zones; (2) genes normally expressed by developmental radial glial progenitors; and (3) genes involved in synaptogenesis. Together with previous results, the data indicate that at least some developmental molecular controls over embryonic neurogenesis can be re-activated in the setting of induction of neurogenesis in the young adult neocortex, and suggest that some of these activate and initiate adult neuronal differentiation from endogenous progenitor populations. Understanding molecular mechanisms contributing to induced adult neurogenesis might enable directed CNS repair

    Comparative Analysis of the Frequency and Distribution of Stem and Progenitor Cells in the Adult Mouse Brain

    Get PDF
    cells (NSCs) and progenitor cells, but it cannot discriminate between these two populations. Given two assays have purported to overcome this shortfall, we performed a comparative analysis of the distribution and frequency of NSCs and progenitor cells detected in 400 m coronal segments along the ventricular neuraxis of the adult mouse brain using the neurosphere assay, the neural colony forming cell assay (N-CFCA), and label-retaining cell (LRC) approach. We observed a large variation in the number of progenitor/stem cells detected in serial sections along the neuraxis, with the number of neurosphereforming cells detected in individual 400 m sections varying from a minimum of eight to a maximum of 891 depending upon the rostral-caudal coordinate assayed. Moreover, the greatest variability occurred in the rostral portion of the lateral ventricles, thereby explaining the large variation in neurosphere frequency previously reported. Whereas the overall number of neurospheres (3730 276) or colonies (4275 124) we detected along the neuraxis did not differ significantly, LRC numbers were significantly reduced (1186 188, 7 month chase) in comparison to both total colonies and neurospheres. Moreover, approximately two orders of magnitude fewer NSC-derived colonies (50 10) were detected using the N-CFCA as compared to LRCs. Given only 5% of the LRCs are cycling (BrdU/Ki-67) or competent to divide (BrdU/Mcm-2), and proliferate upon transfer to culture, it is unclear whether this technique selectively detects endogenous NSCs. Overall, caution should be taken with the interpretation and employment of all these techniques

    AKT inhibition is associated with chemosensitisation in the pancreatic cancer cell line MIA-PaCa-2

    Get PDF
    Activation of the serine/threonine kinase AKT is common in pancreatic cancer; inhibition of which sensitises cells to the apoptotic effect of chemotherapy. Of the various downstream targets of AKT, we examined activation of the NF-kappaB transcription factor and subsequent transcriptional regulation of BCL-2 gene family in pancreatic cancer cells. Inhibition of either phosphatidylinositol-3 kinase or AKT led to a decreased protein level of the antiapoptotic gene BCL-2 and an increased protein level of the proapoptotic gene BAX. Furthermore, inhibition of AKT decreased the function of NF-kappaB, which is capable of transcriptional regulation of the BCL-2 gene. Inhibiting this pathway had little effect on the basal level of apoptosis in pancreatic cancer cells, but increased the apoptotic effect of chemotherapy. The antiapoptotic effect of AKT activation in pancreatic cancer cells may involve transcriptional induction of a profile of BCL-2 proteins that confer resistance to apoptosis; alteration of this balance allows sensitisation to the apoptotic effect of chemotherapy

    Immunotherapy with ponezumab for probable cerebral amyloid angiopathy

    Get PDF
    Objective: Cerebral amyloid angiopathy (CAA) is caused by cerebrovascular deposition of β‐amyloid fragments leading to cerebrovascular dysfunction and other brain injuries. This phase 2, randomized, double–blind trial in patients with probable CAA assessed the efficacy and safety of ponezumab, a novel monoclonal antibody against Aβ1–40. Methods: Thirty‐six participants aged 55–80 years with probable CAA received intravenous placebo (n = 12) or ponezumab (n = 24). The change from baseline to Days 2 and 90 in cerebrovascular reactivity (CVR) was measured in the visual cortex as the natural log of the rising slope of the BOLD fMRI response to a visual stimulus. Safety and tolerability were also assessed. Results: The mean change from baseline to Day 90 was 0.817 (ponezumab) and 0.958 (placebo): a mean ratio of 0.852 (90% CI 0.735–0.989) representing a trend towards reduced CVR in the ponezumab group. This trend was not present at Day 2. There was one asymptomatic occurrence of amyloid–related imaging abnormality–edema in the ponezumab group. The total number of new cerebral microbleeds from baseline to day 90 did not differ between groups. The ponezumab group had a participant with nonfatal new cerebral hemorrhage with aphasia and a participant with subdural hemorrhage that site investigators deemed to be nondrug related. In the placebo group one participant had a fatal intracerebral hemorrhage and one participant had migraine with aura

    Sigma-1 Receptors Regulate Bcl-2 Expression by Reactive Oxygen Species-Dependent Transcriptional Regulation of Nuclear Factor κB

    No full text
    The expression of Bcl-2, the major antiapoptotic member of the Bcl-2 family, is under complex controls of several factors, including reactive oxygen species (ROS). The σ-1 receptor (Sig-1R), which was recently identified as a novel molecular chaperone at the mitochondria-associated endoplasmic reticulum membrane (MAM), has been shown to exert robust cellular protective actions. However, mechanisms underlying the antiapoptotic action of the Sig-1R remain to be clarified. Here, we found that the Sig-1R promotes cellular survival by regulating the Bcl-2 expression in Chinese hamster ovary cells. Although both Sig-1Rs and Bcl-2 are highly enriched at the MAM, Sig-1Rs neither associate physically with Bcl-2 nor regulate stability of Bcl-2 proteins. However, Sig-1Rs tonically regulate the expression of Bcl-2 proteins. Knockdown of Sig-1Rs down-regulates whereas overexpression of Sig-1Rs up-regulates bcl-2 mRNA, indicating that the Sig-1R transcriptionally regulates the expression of Bcl-2. The effect of Sig-1R small interfering RNA down-regulating Bcl-2 was blocked by ROS scavengers and by the inhibitor of the ROS-inducible transcription factor nuclear factor κB (NF-κB). Knockdown of Sig-1Rs up-regulates p105, the precursor of NF-κB, while concomitantly decreasing inhibitor of nuclear factor-κBα. Sig-1R knockdown also accelerates the conversion of p105 to the active form p50. Lastly, we showed that knockdown of Sig-1Rs potentiates H2O2-induced apoptosis; the action is blocked by either the NF-κB inhibitor oridonin or overexpression of Bcl-2. Thus, these findings suggest that Sig-1Rs promote cell survival, at least in part, by transcriptionally regulating Bcl-2 expression via the ROS/NF-κB pathway
    corecore