37 research outputs found

    The vicious cycle of dental fear: exploring the interplay between oral health, service utilization and dental fear

    Get PDF
    BACKGROUND: Based on the hypothesis that a vicious cycle of dental fear exists, whereby the consequences of fear tend to maintain that fear, the relationship between dental fear, self-reported oral health status and the use of dental services was explored. METHODS: The study used a telephone interview survey with interviews predominantly conducted in 2002. A random sample of 6,112 Australian residents aged 16 years and over was selected from 13 strata across all States and Territories. Data were weighted across strata and by age and sex to obtain unbiased population estimates. RESULTS: People with higher dental fear visited the dentist less often and indicated a longer expected time before visiting a dentist in the future. Higher dental fear was associated with greater perceived need for dental treatment, increased social impact of oral ill-health and worse self-rated oral health. Visiting patterns associated with higher dental fear were more likely to be symptom driven with dental visits more likely to be for a problem or for the relief of pain. All the relationships assumed by a vicious cycle of dental fear were significant. In all, 29.2% of people who were very afraid of going to the dentist had delayed dental visiting, poor oral health and symptom-driven treatment seeking compared to 11.6% of people with no dental fear. CONCLUSION: Results are consistent with a hypothesised vicious cycle of dental fear whereby people with high dental fear are more likely to delay treatment, leading to more extensive dental problems and symptomatic visiting patterns which feed back into the maintenance or exacerbation of existing dental fear

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Tailoring crystallization phases in metallic glass nanorods via nucleus starvation

    No full text
    Crystallising a bulk metallic glass usually results in separate phases. Here, the authors use metallic glass nanorods to show that as the sample size approaches the nucleation scale lengths, the crystallization behavior is dictated by the lack of nuclei and nanorods crystallise into a single phase

    Tailoring Crystallization Phases In Metallic Glass Nanorods Via Nucleus Starvation

    No full text
    Many physical phenomena deviate from their established frameworks when the system approaches relevant length scales governing the phenomena. In crystallization, the relevant length scales are the nucleation length set by the nucleus size and density, and the growth length set by diffusion fields. Here we observe unexpected crystallization phenomena at the nanoscale, using metallic glass (MG) nanorods and in situ transmission electron microscopy. The asymmetry between critical heating and cooling rates disappears for small MG nanorods. Strikingly, an apparent single crystalline phase with its composition similar to the glass composition is observed for very small rods, in contrast to bulk samples. We attribute this to the lack of nuclei in small MG nanorods that approach the nucleation length, thus coined the term, nucleus starvation. By controlling the MG nanorod diameter and crystallization kinetics, we can tune the number of nuclei in a nanorod, thereby tailoring the resulting crystallization phases
    corecore