2,107 research outputs found

    A Relativistic Type Ibc Supernova Without a Detected Gamma-ray Burst

    Full text link
    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of Type Ibc supernovae (SNe Ibc). They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. To date, central engine-driven SNe have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected due to limited satellite sensitivity or beaming of the collimated emission away from our line-of-sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for SNe Ibc with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary Type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. The lack of a coincident GRB makes SN 2009bb the first engine-driven SN discovered without a detected gamma-ray signal. A comparison with our extensive radio survey of SNe Ibc reveals that the fraction harboring central engines is low, ~1 percent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Our study demonstrates that upcoming optical and radio surveys will soon rival gamma-ray satellites in pinpointing the nearest engine-driven SNe. A similar result for a different supernova is reported independently.Comment: To appear in Nature on Jan 28 2010. Embargoed for discussion in the press until 13:00 US Eastern Time on Jan 27 (Accepted version, 27 pages, Manuscript and Suppl. Info.

    Relativistic supernovae have shorter-lived central engines or more extended progenitors: the case of SN\,2012ap

    Full text link
    Deep late-time X-ray observations of the relativistic, engine-driven, type Ic SN2012ap allow us to probe the nearby environment of the explosion and reveal the unique properties of relativistic SNe. We find that on a local scale of ~0.01 pc the environment was shaped directly by the evolution of the progenitor star with a pre-explosion mass-loss rate <5x10^-6 Msun yr-1 in line with GRBs and the other relativistic SN2009bb. Like sub-energetic GRBs, SN2012ap is characterized by a bright radio emission and evidence for mildly relativistic ejecta. However, its late time (t~20 days) X-ray emission is ~100 times fainter than the faintest sub-energetic GRB at the same epoch, with no evidence for late-time central engine activity. These results support theoretical proposals that link relativistic SNe like 2009bb and 2012ap with the weakest observed engine-driven explosions, where the jet barely fails to breakout. Furthermore, our observations demonstrate that the difference between relativistic SNe and sub-energetic GRBs is intrinsic and not due to line-of-sight effects. This phenomenology can either be due to an intrinsically shorter-lived engine or to a more extended progenitor in relativistic SNe.Comment: Version accepted to ApJ. Significantly broadened discussio

    On Absorption by Circumstellar Dust, With the Progenitor of SN2012aw as a Case Study

    Full text link
    We use the progenitor of SN2012aw to illustrate the consequences of modeling circumstellar dust using Galactic (interstellar) extinction laws that (1) ignore dust emission in the near-IR and beyond; (2) average over dust compositions, and (3) mis-characterize the optical/UV absorption by assuming that scattered photons are lost to the observer. The primary consequences for the progenitor of SN2012aw are that both the luminosity and the absorption are significantly over-estimated. In particular, the stellar luminosity is most likely in the range 10^4.8 < L/Lsun < 10^5.0 and the star was not extremely massive for a Type IIP progenitor, with M < 15Msun. Given the properties of the circumstellar dust and the early X-ray/radio detections of SN2012aw, the star was probably obscured by an on-going wind with Mdot ~ 10^-5.5 to 10^-5.0 Msun/year at the time of the explosion, roughly consistent with the expected mass loss rates for a star of its temperature (T_* ~ 3600K) and luminosity. In the spirit of Galactic extinction laws, we supply simple interpolation formulas for circumstellar extinction by dusty graphitic and silicate shells as a function of wavelength (>0.3 micron) and total (absorption plus scattering) V-band optical depth (tau < 20). These do not include the contributions of dust emission, but provide a simple, physical alternative to incorrectly using interstellar extinction laws.Comment: Submitted to Ap

    An Intermediate Luminosity Transient in NGC300: The Eruption of a Dust-Enshrouded Massive Star

    Full text link
    [abridged] We present multi-epoch high-resolution optical spectroscopy, UV/radio/X-ray imaging, and archival Hubble and Spitzer observations of an intermediate luminosity optical transient recently discovered in the nearby galaxy NGC300. We find that the transient (NGC300 OT2008-1) has a peak absolute magnitude of M_bol~-11.8 mag, intermediate between novae and supernovae, and similar to the recent events M85 OT2006-1 and SN2008S. Our high-resolution spectra, the first for this event, are dominated by intermediate velocity (~200-1000 km/s) hydrogen Balmer lines and CaII emission and absorption lines that point to a complex circumstellar environment, reminiscent of the yellow hypergiant IRC+10420. In particular, we detect broad CaII H&K absorption with an asymmetric red wing extending to ~1000 km/s, indicative of gas infall onto a massive and relatively compact star (blue supergiant or Wolf-Rayet star); an extended red supergiant progenitor is unlikely. The origin of the inflowing gas may be a previous ejection from the progenitor or the wind of a massive binary companion. The low luminosity, intermediate velocities, and overall similarity to a known eruptive star indicate that the event did not result in a complete disruption of the progenitor. We identify the progenitor in archival Spitzer observations, with deep upper limits from Hubble data. The spectral energy distribution points to a dust-enshrouded star with a luminosity of about 6x10^4 L_sun, indicative of a ~10-20 M_sun progenitor (or binary system). This conclusion is in good agreement with our interpretation of the outburst and circumstellar properties. The lack of significant extinction in the transient spectrum indicates that the dust surrounding the progenitor was cleared by the outburst.Comment: Submitted to ApJ; emulateapj style; 39 pages; 26 figure

    GRB060218 and GRBs associated with Supernovae Ib/c

    Full text link
    We plan to fit the complete gamma- and X-ray light curves of the long duration GRB060218, including the prompt emission, in order to clarify the nature of the progenitors and the astrophysical scenario of the class of GRBs associated to SNe Ib/c. The initial total energy of the electron-positron plasma E_{e^\pm}^{tot}=2.32\times 10^{50} erg has a particularly low value similarly to the other GRBs associated with SNe. For the first time we observe a baryon loading B=10^{-2} which coincides with the upper limit for the dynamical stability of the fireshell. The effective CircumBurst Medium (CBM) density shows a radial dependence n_{cbm} \propto r^{-\alpha} with 1.0<\alpha<1.7 and monotonically decreases from 1 to 10^{-6} particles/cm^3. Such a behavior is interpreted as due to a fragmentation in the fireshell. Analogies with the fragmented density and filling factor characterizing Novae are outlined. The fit presented is particularly significant in view of the complete data set available for GRB060218 and of the fact that it fulfills the Amati relation. We fit GRB060218, usually considered as an X-Ray Flash (XRF), as a "canonical GRB" within our theoretical model. The smallest possible black hole, formed by the gravitational collapse of a neutron star in a binary system, is consistent with the especially low energetics of the class of GRBs associated with SNe Ib/c. We give the first evidence for a fragmentation in the fireshell. Such a fragmentation is crucial in explaining both the unusually large T_{90} and the consequently inferred abnormal low value of the CBM effective density.Comment: 4 pages, 3 figures, to appear in A&A Letter

    The Optical SN 2012bz Associated with the Long GRB 120422A

    Full text link
    The association of Type Ic SNe with long-duration GRBs is well established. We endeavor, through accurate ground-based observational campaigns, to characterize these SNe at increasingly high redshifts. We obtained a series of optical photometric and spectroscopic observations of the Type Ic SN2012bz associated with the Swift long-duration GRB120422A (z=0.283) using the 3.6-m TNG and the 8.2-m VLT telescopes. The peak times of the light curves of SN2012bz in various optical filters differ, with the B-band and i'-band light curves reaching maximum at ~9 and ~23 rest-frame days, respectively. The bolometric light curve has been derived from individual bands photometric measurements, but no correction for the unknown contribution in the near-infrared (probably around 10-15%) has been applied. Therefore, the present light curve should be considered as a lower limit to the actual UV-optical-IR bolometric light curve. This pseudo-bolometric curve reaches its maximum (Mbol = -18.56 +/- 0.06) at 13 +/- 1 rest-frame days; it is similar in shape and luminosity to the bolometric light curves of the SNe associated with z<0.2 GRBs and more luminous than those of SNe associated with XRFs. A comparison with the model generated for the bolometric light curve of SN2003dh suggests that SN2012bz produced only about 15% less 56Ni than SN2003dh, about 0.35 Msol. Similarly the VLT spectra of SN2012bz, after correction for Galactic extinction and for the contribution of the host galaxy, suggest comparable explosion parameters with those observed in SN2003dh (EK~3.5 x 10^52 erg, Mej~7 Msol) and a similar progenitor mass (~25-40 Msol). GRB120422A is consistent with the Epeak-Eiso and the EX,iso-Egamma,iso-E_peak relations. GRB120422A/SN2012bz shows the GRB-SN connection at the highest redshift so far accurately monitored both photometrically and spectroscopically.Comment: 7 pages, 6 figures, 2 tables, accepted for publication in Astronomy & Astrophysic

    The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003

    Get PDF
    Many past studies of cosmological gamma-ray bursts (GRBs) have been limited because of the large distance to typical GRBs, resulting in faint afterglows. There has long been a recognition that a nearby GRB would shed light on the origin of these mysterious cosmic explosions, as well as the physics of their fireballs. However, GRBs nearer than z=0.2 are extremely rare, with an estimated rate of localisation of one every decade. Here, we report the discovery of bright optical afterglow emission from GRB 030329. Our prompt dissemination and the brilliance of the afterglow resulted in extensive followup (more than 65 telescopes) from radio through X-ray bands, as well as measurement of the redshift, z=0.169. The gamma-ray and afterglow properties of GRB 030329 are similar to those of cosmological GRBs (after accounting for the small distance), making this the nearest known cosmological GRB. Observations have already securely identified the progenitor as a massive star that exploded as a supernova, and we anticipate futher revelations of the GRB phenomenon from studies of this source.Comment: 13 pages, 4 figures. Original tex
    corecore