11 research outputs found
Global change pressures on soils from land use and management
Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development
A Detailed Identification of Erosionally Endangered Agricultural Land in Slovakia (Case Study of Nitra Upland)
Water erosion and its processes are the most widespread and serious degradation phenomena in Slovakia (occurring in about 37% of the agricultural land). Given the increasing use of precise land management, it is necessary to have more detailed databases, especially in erosion-accumulation areas. The aim of the research was to identify in detail the areas of erosion-accumulation processes induced by water erosion, which can be considered as highly heterogeneous. In the territory of the Nitra upland the field survey methodology and grid mapping were used, the results of which were verified through soil erosion models. The mapping was done at the topic level and was verified using the USLE and ERDEP soil erosion models in ArcGIS. A comparison of the results of the potential model and real field parameters of soil erosion in the Nitra upland enabled us to generate dominant factors, respectively identify areas prone to soil erosion, and provided a detailed database for precise farming. At the same time, the results became the basis for a review of the current classification by erosion endangered soils. Overall, the methodology is suitable as a basis for developing sustainable management proposals in agricultural land affected by soil erosion risk
Land consumption and land take
Rapid expansion of settlements and related infrastructures is a global trend that comes with severe environmental, economic, and social costs. Steering urbanization toward well-balanced compactness is thus acknowledged as an important strategic orientation in UN Sustainable Development Goal 11 (SDG-11) via the SDG-indicator “Ratio of land consumption rate to population growth rate.” The EU’s simultaneous commitment to being “a frontrunner in implementing [ . . . ] the SDGs” and to striving for “no net land take until 2050” calls for relating the concepts of land consumption and land take to each other. Drawing on an EU-centred questionnaire study, a focus group and a literature review, we scrutinize definitions of land consumption and land take, seeking to show how they are interrelated, and questioning the comparability of respective indicators. We argue that conceptual clarifications and a bridging of the two notions are much needed, and that the precision required for definitions and applications is context-dependent. While approximate understandings may suffice for general communication and dissemination objectives, accurate and consistent interpretations of the discussed concepts seem indispensable for monitoring and reporting purposes. We propose ways of addressing existing ambiguities and suggest prioritizing the term land take in the EU context. Thereby, we aim to enhance conceptual clarity around land consumption and land take—a precondition for solidly informing respective policies and decisions
Land Consumption and Land Take: Enhancing Conceptual Clarity for Evaluating Spatial Governance in the EU Context
Rapid expansion of settlements and related infrastructures is a global trend that comes with severe environmental, economic, and social costs. Steering urbanization toward well-balanced compactness is thus acknowledged as an important strategic orientation in UN Sustainable Development Goal 11 (SDG-11) via the SDG-indicator “Ratio of land consumption rate to population growth rate.” The EU’s simultaneous commitment to being “a frontrunner in implementing […] the SDGs” and to striving for “no net land take until 2050” calls for relating the concepts of land consumption and land take to each other. Drawing on an EU-centred questionnaire study, a focus group and a literature review, we scrutinize definitions of land consumption and land take, seeking to show how they are interrelated, and questioning the comparability of respective indicators. We argue that conceptual clarifications and a bridging of the two notions are much needed, and that the precision required for definitions and applications is context-dependent. While approximate understandings may suffice for general communication and dissemination objectives, accurate and consistent interpretations of the discussed concepts seem indispensable for monitoring and reporting purposes. We propose ways of addressing existing ambiguities and suggest prioritizing the term land take in the EU context. Thereby, we aim to enhance conceptual clarity around land consumption and land take—a precondition for solidly informing respective policies and decisions
National soil data in EU countries, where do we stand?
International audienceAt the European scale, soil characteristics are needed to evaluate soil quality, soil health and soil-based ecosystem services in the context of the European Green Deal. While some soil databases exist at the European scale, a much larger wealth of data is present in individual European countries, allowing a more detailed soil assessment. There is thus an urgent and crucial need to combine these data at the European scale. In the frame of a large European Joint Programme on agricultural soils launched by the European Commission, a survey was conducted in the spring of 2020, in the 24 European participating countries to assess the existing soil data sources, focusing on agricultural soils. The survey will become a contribution to the European Soil Observatory, launched in December 2020, which aims to collect metadata of soil databases related to all kind of land uses, including forest and urban soils. Based upon a comprehensive questionnaire, 170 soil databases were identified at local, regional and national scales. Soil parameters were divided into five groups: (1)main soil parameters according to the Global Soil Map specifications; (2) other soil chemical parameters; (3) other physical parameters; (4) other pedological parameters; and (5) soil biological features. A classification based on the environmental zones of Europe was used to distinguish the climatic zones. This survey shows that while most of the main pedological and chemical parameters are included in more than 70% of the country soil databases, water content, contamination with organic pollutants, and biological parameters are the least frequently reported parameters. Such differences will have consequences when developing an EU policy on soil health as proposed under the EU soil strategy for 2023 and using the data to derive soil health indicators. Many differences in the methods used in collecting, preparing, and analysing the soils were found, thus requiring harmonization procedures and more cooperation among countries and with the EU to use the data at the European scale. In addition, choosing harmonized and useful interpretation and threshold values for EU soil indicators may be challenging due to the different methods used and the wide variety of soil land-use and climate combinations influencing possible thresholds. The temporal scale of the soil databases reported is also extremely wide, starting from the '20s of the 20th century
National soil data in EU countries, where do we stand?
At European scale, soil characteristics are needed to evaluate soil quality, soil health and soi l-based ecosystem services in the context of the European Green Deal. While some soil databases exist at the European scale, a much larger wealth of data is present in individual European countries, al l owing a more detailed soil assessment. There is thus an urgent and crucial need to combine these data at t h e European scale. In the frame of a large European Joint Programme on agricultural soils launched by the European Commission, a survey was conducted in the spring of 2020, i n the 24 European participating countries to assess the existing soil data sources, focusing on agricultural soils. The survey will become a contribution to the European Soil Observatory, launched in December 2020, which aims to collect metadata of soil databases related to all kind of land uses, including fores t and urban soils. Based upon a comprehensive questionnaire, 170 soil databases were identified at local, regional and national scales. Soil parameters were divided into f i ve groups: 1. main soil parametersaccording to the Global Soil Map specifications; 2. other soil chemical parameters; 3. oth e r physical parameters; 4. other pedological parameters; and 5. soil biological features. A classification based onthe environmental zones of Europe was used to distinguish the climatic zones. This survey shows that while most of the main pedological and chemical parameters are included in more than 70 % of the country soil databases, water content, contamination with organic pollutants and biological parameters are the least frequently reported parameters. Such differences will have conse que nce s when developing an EU policy on soil health as proposed under the EU soil strategy for 2023 and using the data to derive soil health indicators. Many differences in the me thods used in collecting, preparing, and analysing the soils were found, thus requiring harmonisation procedures and more cooperation among countries and with the EU to use the data at the European scale Additionally, choosing harmonized and useful interpretation and threshold values f or EU soil indicators may be challenging due to the different methods used and the wide variety of soil land-use and climate combinations influencing possible thresholds. The temporal scale of the soil databases reported is also extremely wide, starting from the ‘20s of the 20th century
National soil data in EU countries, where do we stand?
International audienceAt the European scale, soil characteristics are needed to evaluate soil quality, soil health and soil-based ecosystem services in the context of the European Green Deal. While some soil databases exist at the European scale, a much larger wealth of data is present in individual European countries, allowing a more detailed soil assessment. There is thus an urgent and crucial need to combine these data at the European scale. In the frame of a large European Joint Programme on agricultural soils launched by the European Commission, a survey was conducted in the spring of 2020, in the 24 European participating countries to assess the existing soil data sources, focusing on agricultural soils. The survey will become a contribution to the European Soil Observatory, launched in December 2020, which aims to collect metadata of soil databases related to all kind of land uses, including forest and urban soils. Based upon a comprehensive questionnaire, 170 soil databases were identified at local, regional and national scales. Soil parameters were divided into five groups: (1)main soil parameters according to the Global Soil Map specifications; (2) other soil chemical parameters; (3) other physical parameters; (4) other pedological parameters; and (5) soil biological features. A classification based on the environmental zones of Europe was used to distinguish the climatic zones. This survey shows that while most of the main pedological and chemical parameters are included in more than 70% of the country soil databases, water content, contamination with organic pollutants, and biological parameters are the least frequently reported parameters. Such differences will have consequences when developing an EU policy on soil health as proposed under the EU soil strategy for 2023 and using the data to derive soil health indicators. Many differences in the methods used in collecting, preparing, and analysing the soils were found, thus requiring harmonization procedures and more cooperation among countries and with the EU to use the data at the European scale. In addition, choosing harmonized and useful interpretation and threshold values for EU soil indicators may be challenging due to the different methods used and the wide variety of soil land-use and climate combinations influencing possible thresholds. The temporal scale of the soil databases reported is also extremely wide, starting from the '20s of the 20th century
Land Consumption and Land Take: Enhancing Conceptual Clarity for Evaluating Spatial Governance in the EU Context
Rapid expansion of settlements and related infrastructures is a global trend that comes with severe environmental, economic, and social costs. Steering urbanization toward well-balanced compactness is thus acknowledged as an important strategic orientation in UN Sustainable Development Goal 11 (SDG-11) via the SDG-indicator “Ratio of land consumption rate to population growth rate.” The EU’s simultaneous commitment to being “a frontrunner in implementing […] the SDGs” and to striving for “no net land take until 2050” calls for relating the concepts of land consumption and land take to each other. Drawing on an EU-centred questionnaire study, a focus group and a literature review, we scrutinize definitions of land consumption and land take, seeking to show how they are interrelated, and questioning the comparability of respective indicators. We argue that conceptual clarifications and a bridging of the two notions are much needed, and that the precision required for definitions and applications is context-dependent. While approximate understandings may suffice for general communication and dissemination objectives, accurate and consistent interpretations of the discussed concepts seem indispensable for monitoring and reporting purposes. We propose ways of addressing existing ambiguities and suggest prioritizing the term land take in the EU context. Thereby, we aim to enhance conceptual clarity around land consumption and land take—a precondition for solidly informing respective policies and decisions.Housing Institutions & Governanc
National soil data in EU countries, where do we stand?
International audienceAt the European scale, soil characteristics are needed to evaluate soil quality, soil health and soil-based ecosystem services in the context of the European Green Deal. While some soil databases exist at the European scale, a much larger wealth of data is present in individual European countries, allowing a more detailed soil assessment. There is thus an urgent and crucial need to combine these data at the European scale. In the frame of a large European Joint Programme on agricultural soils launched by the European Commission, a survey was conducted in the spring of 2020, in the 24 European participating countries to assess the existing soil data sources, focusing on agricultural soils. The survey will become a contribution to the European Soil Observatory, launched in December 2020, which aims to collect metadata of soil databases related to all kind of land uses, including forest and urban soils. Based upon a comprehensive questionnaire, 170 soil databases were identified at local, regional and national scales. Soil parameters were divided into five groups: (1)main soil parameters according to the Global Soil Map specifications; (2) other soil chemical parameters; (3) other physical parameters; (4) other pedological parameters; and (5) soil biological features. A classification based on the environmental zones of Europe was used to distinguish the climatic zones. This survey shows that while most of the main pedological and chemical parameters are included in more than 70% of the country soil databases, water content, contamination with organic pollutants, and biological parameters are the least frequently reported parameters. Such differences will have consequences when developing an EU policy on soil health as proposed under the EU soil strategy for 2023 and using the data to derive soil health indicators. Many differences in the methods used in collecting, preparing, and analysing the soils were found, thus requiring harmonization procedures and more cooperation among countries and with the EU to use the data at the European scale. In addition, choosing harmonized and useful interpretation and threshold values for EU soil indicators may be challenging due to the different methods used and the wide variety of soil land-use and climate combinations influencing possible thresholds. The temporal scale of the soil databases reported is also extremely wide, starting from the '20s of the 20th century
Status of the World’s Soil Resources Main report
The SWSR will constitute the reference document on the status of global soil resources with a strong regional assessment on soil change. The information is based on peer-reviewed scientific literature, complemented with expert knowledge and reliable project outputs (mainly FAO ones). It provides a description and a ranking of ten major soil threats that endanger ecosystem functions, goods and services globally and in each region separately. Additionally, it describes direct and indirect pressure son soils and ways and means to combat soil degradation at all levels. The report contains a Synthesis report for policy makers that summarizes its findings, conclusions and recommendations.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Centro de Investigaciones Agronómicas (CIA)UCR::Vicerrectoría de Docencia::Ciencias Agroalimentarias::Facultad de Ciencias Agroalimentarias::Escuela de Agronomí