615 research outputs found

    ObjectSim - A Reusable Object Oriented DIS Visual Simulation

    Get PDF
    This research designed and implemented a reusable Distributed Interactive Simulation DIS visual simulation architecture for Silicon Graphics platforms. The goal was to research software architecture technologies and to create a design and implementation using these ideas. The architecture was designed using object oriented techniques to provide the ability to customize it via inheritance extension. The resulting design was implemented using C and applied to several DIS visual simulation projects in the Graphics Lab at AFIT. The architecture, named ObjectSim, was successful in its goal of providing a reusable core for the DIS visual simulation projects in the Graphics Lab at AFIT. It provides simulation developers reusable capabilities in the areas of rendering, data display, device interfacing, and DIS network interfacing. The projects designed and implemented with ObjectSim exceeded their research goals. Data on reuse effectiveness and several different performance areas was collected

    Where are the Hedgehogs in Nematics?

    Full text link
    In experiments which take a liquid crystal rapidly from the isotropic to the nematic phase, a dense tangle of defects is formed. In nematics, there are in principle both line and point defects (``hedgehogs''), but no point defects are observed until the defect network has coarsened appreciably. In this letter the expected density of point defects is shown to be extremely low, approximately 10−810^{-8} per initially correlated domain, as result of the topology (specifically, the homology) of the order parameter space.Comment: 6 pages, latex, 1 figure (self-unpacking PostScript)

    Challenges of and Insights into Acid-Catalyzed Transformations of Sugars

    Get PDF
    The selective transformation of hexose and pentose sugars to intermediate platform chemicals, such as furans, is an essential step in the conversion of cellulosic and hemicellulosic biomass to biofuels and biochemicals. Yet, many challenges in achieving commercially viable processes remain. In this feature article, we outline challenges that need to be overcome to enable these transformations. Then, we present the newly introduced acid-catalyzed isomerization of aldose sugars to ketose sugars via a class of solid Lewis acid catalysts (e.g., Sn-Beta, Ti-Beta). We elucidate mechanistic insights arising from subnanometer cooperativity and solvent effects that can be controlled to tune reaction pathways and selectivity and draw parallels between heterogeneous and homogeneous Lewis acid catalysts. Subsequently, we discuss fructose dehydration to 5-hydroxyl-methylfurfural (HMF) via homogeneous and heterogeneous Brønsted acid-catalyzed chemistry. We show how fundamental insights arising from the combination of kinetics, spectroscopy, and multiscale simulations rationalize the improved yield of HMF in water–organic cosolvents. The stability of heterogeneous Lewis acid catalysts under low pH enables tandem Brønsted and Lewis acid-catalyzed reactions in a single pot that overcomes equilibrium limitations and gives a high HMF yield starting from sugar raw materials. Additionally, we provide an overview of multicomponent adsorption of biomass derivatives from solution in microporous materials and discuss how structure–property relations can lead to superior micro- and micromesoporous carbon adsorbents for reactive adsorption toward high HMF yield. Finally, we provide an outlook for the field

    Assembly of the Red Sequence in Infrared-Selected Galaxy Clusters from the IRAC Shallow Cluster Survey

    Full text link
    We present results for the assembly and star formation histories of massive (~L*) red sequence galaxies in 11 spectroscopically confirmed, infrared-selected galaxy clusters at 1.0 < z < 1.5, the precursors to present-day massive clusters with M ~ 10^15 M_sun. Using rest-frame optical photometry, we investigate evolution in the color and scatter of the red sequence galaxy population, comparing with models of possible star formation histories. In contrast to studies of central cluster galaxies at lower redshift (z < 1), these data are clearly inconsistent with the continued evolution of stars formed and assembled primarily at a single, much-earlier time. Specifically, we find that the colors of massive cluster galaxies at z = 1.5 imply that the bulk of star formation occurred at z ~ 3, whereas by z = 1 their colors imply formation at z ~ 2; therefore these galaxies exhibit approximately the same luminosity-weighted stellar age at 1 < z < 1.5. This likely reflects star formation that occurs over an extended period, the effects of significant progenitor bias, or both. Our results generally indicate that massive cluster galaxy populations began forming a significant mass of stars at z >~ 4, contained some red spheroids by z ~ 1.5, and were actively assembling much of their final mass during 1 < z < 2 in the form of younger stars. Qualitatively, the slopes of the cluster color-magnitude relations are consistent with no significant evolution relative to local clusters.Comment: 24 pages, 9 figures, accepted to Ap

    Global Illness and Deaths Caused by Rotavirus Disease in Children

    Get PDF
    To estimate the global illness and deaths caused by rotavirus disease, we reviewed studies published from 1986 to 2000 on deaths caused by diarrhea and on rotavirus infections in children. We assessed rotavirus-associated illness in three clinical settings (mild cases requiring home care alone, moderate cases requiring a clinic visit, and severe cases requiring hospitalization) and death rates in countries in different World Bank income groups. Each year, rotavirus causes approximately 111 million episodes of gastroenteritis requiring only home care, 25 million clinic visits, 2 million hospitalizations, and 352,000–592,000 deaths (median, 440,000 deaths) in children <5 years of age. By age 5, nearly every child will have an episode of rotavirus gastroenteritis, 1 in 5 will visit a clinic, 1 in 60 will be hospitalized, and approximately 1 in 293 will die. Children in the poorest countries account for 82% of rotavirus deaths. The tremendous incidence of rotavirus disease underscores the urgent need for interventions, such as vaccines, to prevent childhood deaths in developing nations

    Prefrontal Cortex Lesions Impair Object-Spatial Integration

    Get PDF
    How and where object and spatial information are perceptually integrated in the brain is a central question in visual cognition. Single-unit physiology, scalp EEG, and fMRI research suggests that the prefrontal cortex (PFC) is a critical locus for object-spatial integration. To test the causal participation of the PFC in an object-spatial integration network, we studied ten patients with unilateral PFC damage performing a lateralized object-spatial integration task. Consistent with single-unit and neuroimaging studies, we found that PFC lesions result in a significant behavioral impairment in object-spatial integration. Furthermore, by manipulating inter-hemispheric transfer of object-spatial information, we found that masking of visual transfer impairs performance in the contralesional visual field in the PFC patients. Our results provide the first evidence that the PFC plays a key, causal role in an object-spatial integration network. Patient performance is also discussed within the context of compensation by the non-lesioned PFC

    Distinct Changes in cAMP and Extracellular Signal-Regulated Protein Kinase Signalling in L-DOPA-Induced Dyskinesia

    Get PDF
    Background: In rodents, the development of dyskinesia produced by L-DOPA in the dopamine-depleted striatum occurs in response to increased dopamine D1 receptor-mediated activation of the cAMP- protein kinase A and of the Rasextracellular signal-regulated kinase (ERK) signalling pathways. However, very little is known, in non-human primates, about the regulation of these signalling cascades and their association with the induction, manifestation and/or maintenance of dyskinesia. Methodology/Results: We here studied, in the gold-standard non-human primate model of Parkinson’s disease, the changes in PKA-dependent phosphorylation of DARPP-32 and GluR1 AMPA receptor, as well as in ERK and ribosomal protein S6 (S6) phosphorylation, associated to acute and chronic administration of L-DOPA. Increased phosphorylation of DARPP-32 and GluR1 was observed in both L-DOPA first-ever exposed and chronically-treated dyskinetic parkinsonian monkeys. In contrast, phosphorylation of ERK and S6 was enhanced preferentially after acute L-DOPA administration and decreased during the course of chronic treatment. Conclusion: Dysregulation of cAMP signalling is maintained during the course of chronic L-DOPA administration, while abnormal ERK signalling peaks during the initial phase of L-DOPA treatment and decreases following prolonged exposure

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio
    • …
    corecore