2,067 research outputs found

    Calf Strength Loss During Mechanical Unloading: Does It Matter?

    Get PDF
    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions

    The missense of smell: functional variability in the human odorant receptor repertoire.

    Get PDF
    Humans have ~400 intact odorant receptors, but each individual has a unique set of genetic variations that lead to variation in olfactory perception. We used a heterologous assay to determine how often genetic polymorphisms in odorant receptors alter receptor function. We identified agonists for 18 odorant receptors and found that 63% of the odorant receptors we examined had polymorphisms that altered in vitro function. On average, two individuals have functional differences at over 30% of their odorant receptor alleles. To show that these in vitro results are relevant to olfactory perception, we verified that variations in OR10G4 genotype explain over 15% of the observed variation in perceived intensity and over 10% of the observed variation in perceived valence for the high-affinity in vitro agonist guaiacol but do not explain phenotype variation for the lower-affinity agonists vanillin and ethyl vanillin

    Detecting Subtle Changes in Visuospatial Executive Function and Learning in the Amnestic Variant of Mild Cognitive Impairment

    Get PDF
    BACKGROUND AND PURPOSE: Amnestic mild cognitive impairment (aMCI) is a putative prodromal stage of Alzheimer's disease (AD) characterized by deficits in episodic verbal memory. Our goal in the present study was to determine whether executive dysfunction may also be detectable in individuals diagnosed with aMCI. METHODS: This study used a hidden maze learning test to characterize component processes of visuospatial executive function and learning in a sample of 62 individuals with aMCI compared with 94 healthy controls. RESULTS: Relative to controls, individuals with aMCI made more exploratory/learning errors (Cohen's d = .41). Comparison of learning curves revealed that the slope between the first two of five learning trials was four times as steep for controls than for individuals with aMCI (Cohen's d = .64). Individuals with aMCI also made a significantly greater number of rule-break/error monitoring errors across learning trials (Cohen's d = .21). CONCLUSIONS: These results suggest that performance on a task of complex visuospatial executive function is compromised in individuals with aMCI, and likely explained by reductions in initial strategy formulation during early visual learning and "on-line" maintenance of task rules

    The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study

    Get PDF
    Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses

    Isokinetic muscle function comparison of lower limbs among elderly fallers and non-fallers

    Get PDF
    O objetivo deste estudo foi identificar se há diferenças entre o desempenho muscular de tornozelo, joelho e quadril em idosos com e sem relato de queda nos últimos seis meses. Foram incluídos 81 idosos com 65 anos ou mais: 56 negaram quedas (G1) e 25 relataram quedas (G2). Utilizou-se o questionário perfil de atividade humana para medir o nível de atividade física, e o dinamômetro isocinético para mensurar os parâmetros físicos da função muscular. Os grupos não diferiram entre si em relação à idade (p=0,925), duração (p=0,065) e frequência (p=0,302) da prática do exercício físico, índice de massa corpórea (p=0,995) e nível de atividade física (p=0,561). O G2 apresentou menor desempenho para as variáveis pico de torque de flexão e extensão de joelho esquerdo (p=0,027 e p=0,030, respectivamente) e trabalho por peso corporal (p=0,040) de flexão de joelho esquerdo a 60°/s; pico de torque e trabalho por peso corporal de flexão e extensão de joelho a 180°/s bilateralmente (p<0,050); e potência média de flexão de joelhos direito e esquerdo (p=0,030). A maioria das variáveis do tornozelo e quadril não apresentou diferenças entre os grupos. Apenas a variável pico de torque de extensão de quadril esquerdo foi significativamente maior no G1 (p=0,035). É importante considerar a função muscular do joelho na avaliação clínica de idosos para direcionar a intervenção terapêutica e a prevenção de quedas.The aim of this study was to identify whether there are differences between the performance of muscular groups of ankle, knee and hip among elderly people who didn't have falls and individuals who reported falls in the last six months. The study included 81 elderly aged 65 or older: 56 non-faller subjects (G1) and 25 faaller subjects (G2). To obtain the level of physical activity, the questionnaire Human Activity Profile was used, and the muscle function of the lower limbs was assessed using isokinetic dynamometer. The groups did not differ regarding age (p=0.925), duration (p=0.065) and frequency (p=0.302) of the practice of physical exercise, body mass index (BMI) (p=0.995) and level of physical activity (p=0.561). The G2 showed a lower performance of peak torque of left knee flexion and extension (p=0.027 and p=0.030, respectively) and work proportional to body weight (p=0.040) of left knee flexion at 60°/s; peak torque and work proportional to body weight of bilaterally knee flexion and extension at 180°/s (p<0.05) and average power of right and left knee extension (p=0.03). Most variables of ankle and hip joints did not differ between groups. Only peak torque of left hip extension was significantly higher in the non-faller group (p=0.035). It is important to consider knee muscle function in the clinical evaluation of elderly in order to make the intervention more assertive and thus to prevent falls

    General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts

    Get PDF
    Although Raney nickel made by dealloying has been used as a heterogeneous catalyst in a variety of organic syntheses for more than 80 years, only recently scientists have begun to realize that dealloying can generate nanoporous alloys with extraordinary structural characteristics. Herein, we achieved successful synthesis of a variety of monodisperse alloy nanoporous nanoparticles via a facile chemical dealloying process using nanocrystalline alloys as precursors. The as-prepared alloy nanoporous nanoparticles with large surface area and small pores show superior catalytic properties compared with alloyed nanoparticles. It is believed that these novel alloy nanoporous nanoparticles would open up new opportunities for catalytic applications

    A Re-Examination of Global Suppression of RNA Interference by HIV-1

    Get PDF
    The nature of the interaction between replicating HIV-1 and the cellular RNAi pathway has been controversial, but it is clear that it can be complex and multifaceted. It has been proposed that the interaction is bi-directional, whereby cellular silencing pathways can restrict HIV-1 replication, and in turn, HIV-1 can suppress silencing pathways. Overall suppression of RNAi has been suggested to occur via direct binding and inhibition of Dicer by the HIV-1 Tat protein or through sequestration of TRBP, a Dicer co-factor, by the structured TAR element of HIV-1 transcripts. The role of Tat as an inhibitor of Dicer has been questioned and our results support and extend the conclusion that Tat does not inhibit RNAi that is mediated by either exogenous or endogenous miRNAs. Similarly, we find no suppression of silencing pathways in cells with replicating virus, suggesting that viral products such as the TAR RNA elements also do not reduce the efficacy of cellular RNA silencing. However, knockdown of Dicer does allow increased viral replication and this occurs at a post-transcriptional level. These results support the idea that although individual miRNAs can act to restrict HIV-1 replication, the virus does not counter these effects through a global suppression of RNAi synthesis or processing
    corecore