164 research outputs found

    UNITE CubeSat: From Inception to Early Orbital Operations

    Get PDF
    On January 31, 2019 the University of Southern Indiana UNITE CubeSat was deployed from the International Space Station and has transmitted data every day since. The missions of UNITE [Undergraduate Nano Ionospheric Temperature Explorer] are to measure plasma properties in the lower ionosphere using a Langmuir Plasma Probe, to measure its internal and skin temperatures to compare with a student-developed thermal model, and to track the orbital decay of the CubeSat, particularly near re-entry. The 3U UNITE CubeSat is passively magnetically and aerodynamically stabilized. This paper summarizes the design, build, integration, test and operations phases of the UNITE project since its inception in August 2016. The all-undergraduate team designed, fabricated, tested and integrated the command board, solar panels, and temperature sensor array. In addition, the team integrated a magnetometer and GPS. A commercially purchased Electric Power/Communication Subsystem provides Maximum Power Point Tracking and Simplex and Duplex communication through the Globalstar satellite network allowing nearly 24/7 contact with UNITE. The team wrote and tested the flight software which is divided into five primary modes. Some results from the first several months of flight are summarized and lessons learned are shared, with the intent of assisting future CubeSat teams

    Evidence in the Japan Sea of microdolomite mineralization within gas hydrate microbiomes

    Get PDF
    This study was conducted under the commission of AIST (National Institute of Advanced Industrial Science and Technology, Japan) from 2013–2015 as part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan). Ongoing work is currently being carried out thanks to a Grant-in-aid provided by the JSPS and MEXT (Kaken Project # 17K05712). The authors also would like to acknowledge laboratory assistance provided by A. Hiruta, T. Oi, N. Ishida, and R. Warabi (GHRL, Meiji University), Y. Kusaba (AORI, University of Tokyo), S. Motai (Kochi Inst. Core Sample Research, JAMSTEC), and Y. Nakajima (Joetsu Environmental Science Centre).Peer reviewedPublisher PD

    1961 Ruby Yearbook

    Get PDF
    A digitized copy of the 1961 Ruby, the Ursinus College yearbook.https://digitalcommons.ursinus.edu/ruby/1064/thumbnail.jp

    The effect of muscle-tendon unit vs. fascicle analyses on vastus lateralis force-generating capacity during constant power output cycling with variable cadence

    Get PDF
    The maximum force-generating capacity of a muscle is dependent on the lengths and velocities of its contractile apparatus. Muscle-tendon unit (MTU) length changes can be estimated from joint kinematics; however, contractile element length changes are more difficult to predict during dynamic contractions. The aim of this study was to compare vastus lateralis (VL) MTU and fascicle level force-length and force-velocity relationships, and dynamic muscle function while cycling at a constant submaximal power output (2.5 W/kg) with different cadences. We hypothesized that manipulating cadence at a constant power output would not affect VL MTU shortening, but significantly affect VL fascicle shortening. Furthermore, these differences would affect the predicted force capacity of the muscle. Using an isokinetic dynamometer and B-mode ultrasound (US), we determined the force-length and force-velocity properties of the VL MTU and its fascicles. In addition, three-dimensional kinematics and kinetics of the lower limb, as well as US images of VL fascicles were collected during submaximal cycling at cadences of 40, 60, 80, and 100 rotations per minute. Ultrasound measures revealed a significant increase in fascicle shortening as cadence decreased (84% increase across all conditions, P < 0.01), whereas there were no significant differences in MTU lengths across any of the cycling conditions (maximum of 6%). The MTU analysis resulted in greater predicted force capacity across all conditions relative to the force-velocity relationship (P < 0.01). These results reinforce the need to determine muscle mechanics in terms of separate contractile element and connective tissue length changes during isokinetic contractions, as well as dynamic movements like cycling

    Structure of \u3ci\u3eClostridium difficile\u3c/i\u3e PilJ Exhibits Unprecedented Divergence from Known Type IV Pilins

    Get PDF
    Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, cellular adhesion, and colonization. Recently, there has been an increased appreciation of the ability of Gram-positive species, including Clostridium difficile, to produce Type IV pili. Here we report the first three-dimensional structure of a Grampositive Type IV pilin, PilJ, demonstrate its incorporation into Type IV pili, and offer insights into how the Type IV pili of C. difficile may assemble and function. PilJ has several unique structural features, including a dual-pilin fold and the incorporation of a structural zinc ion. We show that PilJ is incorporated into Type IV pili in C. difficile and present a model in which the incorporation of PilJ into pili exposes the C-terminal domain of PilJ to create a novel interaction surface

    EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis.

    Get PDF
    Hydrops fetalis describes fluid accumulation in at least 2 fetal compartments, including abdominal cavities, pleura, and pericardium, or in body tissue. The majority of hydrops fetalis cases are nonimmune conditions that present with generalized edema of the fetus, and approximately 15% of these nonimmune cases result from a lymphatic abnormality. Here, we have identified an autosomal dominant, inherited form of lymphatic-related (nonimmune) hydrops fetalis (LRHF). Independent exome sequencing projects on 2 families with a history of in utero and neonatal deaths associated with nonimmune hydrops fetalis uncovered 2 heterozygous missense variants in the gene encoding Eph receptor B4 (EPHB4). Biochemical analysis determined that the mutant EPHB4 proteins are devoid of tyrosine kinase activity, indicating that loss of EPHB4 signaling contributes to LRHF pathogenesis. Further, inactivation of Ephb4 in lymphatic endothelial cells of developing mouse embryos led to defective lymphovenous valve formation and consequent subcutaneous edema. Together, these findings identify EPHB4 as a critical regulator of early lymphatic vascular development and demonstrate that mutations in the gene can cause an autosomal dominant form of LRHF that is associated with a high mortality rate
    corecore