190 research outputs found

    Single walled carbon nanotube channel flow electrode : hydrodynamic voltammetry at the nanomolar level

    Get PDF
    The use of single walled carbon nanotube (SWNT) band electrodes in a channel flow cell, for low concentration detection, with hydrodynamic voltammetry is reported. A two dimensional SWNT network electrode is combined with a one piece channel flow cell unit, fabricated by microstereolithography. This configuration provides well defined hydrodynamics over a wide range of volume flow rates (0.05–25 mL min− 1). Limiting current measurements, from linear sweep voltammograms, are in good agreement with the channel electrode Levich equation, for the one electron oxidation of ferrocenylmethyl trimethylammonium (FcTMA+), over a wide concentration range, 1 × 10− 8 M to 2.1 × 10− 5 M, with a detection limit of 5 nM. At the highest flow rates, some influence of the slightly recessed electrode geometry arising from the SWNT electrode fabrication is noted. However, this can be accounted for by a full simulation of the hydrodynamics and solution of the resulting convection–diffusion equation. Application of this hydrodynamic configuration to the voltammetric detection of dopamine is also demonstrated

    Electroanalytical applications of carbon electrodes using novel hydrodynamic flow devices

    Get PDF
    Since the first reported use of carbon nanotubes (CNTs) as an electrode material in 1996 the use of CNTs within electrochemistry has grown rapidly. Single walled carbon nanotubes offer bio-compatibility combined with nano-scale dimensions and low background currents in the pristine state. Over the past decade the quantity of SWNTs synthesised globally has greatly increased making the material available for a variety of studies and potentially a feasible material for commercial electrodes. Despite this rise in popularity there is still an on going debate about the sites of electron transfer (ET) at a carbon nanotube. Some reports claim that the sidewall of the carbon nanotube exhibits sluggish ET rates with the majority of the ET occurring at defect sites and the end of the CNT. In contrast there is also evidence that suggests that ET at the sidewall is facile and not sluggish. The origin of ET is investigated using both theoretical and experimental data to probe the developing diffusion profiles to active ET sites. This is achieved on the timescale of a typical voltammetric experiment by significantly reducing the rate of diffusion to the electroactive sites using a NafionTM film. The reduced rate of diffusion allows the developing diffusion profiles to the individual sites to be decoupled. The use of convection and diffusion is a proven electrochemical technique to increase the sensitivity of analytical measurements and to probe reaction rates and mechanisms. The well-defined mass transport within a channel flow cell or an impinging jet electrode, combined with the continual replacement of solution, makes this geometry amenable to online studies, e.g. bedside or industrial monitoring, or a combination with chromatography. One draw back of conventional channel flow and impinging jet electrode set-ups is the need for specialist equipment or calibration steps each time the system is assembled. The use of microstereo lithography (MSL) to construct custom designed cells for use with a variety of planar electrodes is investigated. The hydrodynamics within the proposed designs are theoretically tested and verified experimentally. The devices constructed are easily assembled using a wide range of electrode materials and the computer aided manufacture provides flexibility in critical dimensions. Importantly, the devices only require a one-off determination of the height prior to assembly, removing the need for an electrochemical calibration step as the cells do not distort during assembly. Of particular interest for analytical studies is the greatly reduced background currents provided by a carbon nanotube network compared to an equivalent size carbon macroelectrode. The lower background signal allows small Faradaic currents to be observed experimentally, allowing lower concentrations to be distinguished. The enhanced sensitivity is combined with the increased mass transport of channel flow and impinging jet convective systems to determine the limit of detection for particular channel and impinging jet geometries under constant flow rates. This approach allows the successful detection of nano-molar concentrations under hydrodynamic control using standard voltammetric techniques

    Scanning electrochemical cell microscopy : a versatile technique for nanoscale electrochemistry and functional imaging

    Get PDF
    Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, confined between the probe and the surface, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science

    XMM-Newton Detects a Hot Gaseous Halo in the Fastest Rotating Spiral Galaxy UGC 12591

    Full text link
    We present our XMM-Newton observation of the fastest rotating spiral galaxy UGC 12591. We detect hot gas halo emission out to 110 kpc from the galaxy center, and constrain the halo gas mass to be smaller than 3.5e11 solar masses. We also measure the temperature of the hot gas as T=0.64\pm0.03 keV. Combining our X-ray constraints and the near-infrared and radio measurements in the literature, we find a baryon mass fraction of 0.03-0.04 in UGC 12591, suggesting a missing baryon mass of 75% compared with the cosmological mean value. Combined with another recent measurement in NGC 1961, the result strongly argues that the majority of missing baryons in spiral galaxies does not reside in their hot halos. We also find that UGC 12591 lies significantly below the baryonic Tully-Fisher relationship. Finally, we find that the baryon fractions of massive spiral galaxies are similar to those of galaxy groups with similar masses, indicating that the baryon loss is ultimately controlled by the gravitational potential well. The cooling radius of this gas halo is small, similar to NGC 1961, which argues that the majority of stellar mass of this galaxy is not assembled as a result of cooling of this gas halo.Comment: 20 pages, 8 figures, submitted to Ap

    Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) as a new local dissolution kinetic probe : application to salicylic acid dissolution in aqueous solution

    Get PDF
    Dissolution kinetics of the (110) face of salicylic acid in aqueous solution is determined by hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) using a 2.5 μm diameter platinum ultramicroelectrode (UME). The method operates by translating the probe UME towards the surface at a series of positions across the crystal and inducing dissolution via the reduction of protons to hydrogen, which titrates the weak acid and promotes the dissolution reaction, but only when the UME is close to the crystal. Most importantly, as dissolution is only briefly and transiently induced at each location, the initial dissolution kinetics of an as-grown single crystal surface can be measured, rather than a surface which has undergone significant dissolution (pitting), as in other techniques. Mass transport and kinetics in the system are modelled using finite element method simulations which allows dissolution rate constants to be evaluated. It is found that the kinetics of an ‘as-grown’ crystal are much slower than for a surface that has undergone partial bulk dissolution (mimicking conventional techniques), which can be attributed to a dramatic change in surface morphology as identified by atomic force microscopy (AFM). The ‘as-grown’ (110) surface presents extended terrace structures to the solution which evidently dissolve slowly, whereas a partially dissolved surface has extensive etch features and step sites which greatly enhance dissolution kinetics. This means that crystals such as salicylic acid will show time-dependent dissolution kinetics (fluxes) that are strongly dependent on crystal history, and this needs to be taken into account to fully understand dissolution

    Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes

    Get PDF
    As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics. © 2012 American Chemical Society

    Combinatorial localized dissolution analysis : application to acid-induced dissolution of dental enamel and the effect of surface treatments

    Get PDF
    A combination of scanning electrochemical cell microscopy (SECCM) and atomic force microscopy (AFM) is used to quantitatively study the acid-induced dissolution of dental enamel. A micron-scale liquid meniscus formed at the end of a dual barrelled pipette, which constitutes the SECCM probe, is brought into contact with the enamel surface for a defined period. Dissolution occurs at the interface of the meniscus and the enamel surface, under conditions of well-defined mass transport, creating etch pits that are then analysed via AFM. This technique is applied to bovine dental enamel, and the effect of various treatments of the enamel surface on acid dissolution (1 mM HNO3) is studied. The treatments investigated are zinc ions, fluoride ions and the two combined. A finite element method (FEM) simulation of SECCM mass transport and interfacial reactivity, allows the intrinsic rate constant for acid-induced dissolution to be quantitatively determined. The dissolution of enamel, in terms of Ca2+ flux (jCa2+), is first order with respect to the interfacial proton concentration and given by the following rate law: jCa2+=k0[H+], with k0=0.099±0.008 cm s−1. Treating the enamel with either fluoride or zinc ions slows the dissolution rate, although in this model system the partly protective barrier only extends around 10–20 nm into the enamel surface, so that after a period of a few seconds dissolution of modified surfaces tends towards that of native enamel. A combination of both treatments exhibits the greatest protection to the enamel surface, but the effect is again transient

    Do Hot Haloes Around Galaxies Contain the Missing Baryons?

    Full text link
    Galaxies are missing most of their baryons, and many models predict these baryons lie in a hot halo around galaxies. We establish observationally motivated constraints on the mass and radii of these haloes using a variety of independent arguments. First, the observed dispersion measure of pulsars in the Large Magellanic Cloud allows us to constrain the hot halo around the Milky Way: if it obeys the standard NFW profile, it must contain less than 4-5% of the missing baryons from the Galaxy. This is similar to other upper limits on the Galactic hot halo, such as the soft X-ray background and the pressure around high velocity clouds. Second, we note that the X-ray surface brightness of hot haloes with NFW profiles around large isolated galaxies is high enough that such emission should be observed, unless their haloes contain less than 10-25% of their missing baryons. Third, we place constraints on the column density of hot haloes using nondetections of OVII absorption along AGN sightlines: in general they must contain less than 70% of the missing baryons or extend to no more than 40 kpc. Flattening the density profile of galactic hot haloes weakens the surface brightness constraint so that a typical L∗_* galaxy may hold half its missing baryons in its halo, but the OVII constraint remains unchanged, and around the Milky Way a flattened profile may only hold 6−136-13% of the missing baryons from the Galaxy (2−4×1010M⊙2-4 \times 10^{10} M_{\odot}). We also show that AGN and supernovae at low to moderate redshift - the theoretical sources of winds responsible for driving out the missing baryons - do not produce the expected correlations with the baryonic Tully-Fisher relationship and so are insufficient to explain the missing baryons from galaxies. We conclude that most of missing baryons from galaxies do not lie in hot haloes around the galaxies, and that the missing baryons never fell into the potential wells of protogalaxies in the first place. They may have been expelled from the galaxies as part of the process of galaxy formation.Comment: accepted for publication in the Astrophysical Journa

    Dual-barrel conductance micropipet as a new approach to the study of ionic crystal dissolution kinetics

    Get PDF
    A new approach to the study of ionic crystal dissolution kinetics is described, based on the use of a dual-barrel theta conductance micropipet. The solution in the pipet is undersaturated with respect to the crystal of interest, and when the meniscus at the end of the micropipet makes contact with a selected region of the crystal surface, dissolution occurs causing the solution composition to change. This is observed, with better than 1 ms time resolution, as a change in the ion conductance current, measured across a potential bias between an electrode in each barrel of the pipet. Key attributes of this new technique are: (i) dissolution can be targeted at a single crystal surface; (ii) multiple measurements can be made quickly and easily by moving the pipet to a new location on the surface; (iii) materials with a wide range of kinetics and solubilities are open to study because the duration of dissolution is controlled by the meniscus contact time; (iv) fast kinetics are readily amenable to study because of the intrinsically high mass transport rates within tapered micropipets; (v) the experimental geometry is well-defined, permitting finite element method modeling to allow quantitative analysis of experimental data. Herein, we study the dissolution of NaCl as an example system, with dissolution induced for just a few milliseconds, and estimate a first-order heterogeneous rate constant of 7.5 (±2.5) × 10–5 cm s–1 (equivalent surface dissolution flux ca. 0.5 μmol cm–2 s–1 into a completely undersaturated solution). Ionic crystals form a huge class of materials whose dissolution properties are of considerable interest, and we thus anticipate that this new localized microscale surface approach will have considerable applicability in the future

    THE STRUCTURE OF THE LOCAL HOT BUBBLE

    Get PDF
    Diffuse X-rays from the Local Galaxy (DXL) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB). Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey. The "cleaned" maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT = 0.097 keV ± 0.013 keV (FWHM) ± 0.006 keV (systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB, which we found to be in good agreement with the structure of the local cavity measured from dust and gas
    • …
    corecore