78 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    A path to stable low-torque plasma operation in ITER with test blanket modules

    No full text
    New experiments in the low-torque ITER Q = 10 scenario on DIII-D demonstrate that n = 1 magnetic fields from a single row of ex-vessel control coils enable operation at ITER performance metrics in the presence of applied non-axisymmetric magnetic fields from a test blanket module (TBM) mock-up coil. With n = 1 compensation, operation below the ITER-equivalent injected torque is successful at three times the ITER equivalent toroidal magnetic field ripple for a pair of TBMs in one equatorial port, whereas the uncompensated TBM field leads to rotation collapse, loss of H-mode and plasma current disruption. In companion experiments at high plasma beta, where the n = 1 plasma response is enhanced, uncorrected TBM fields degrade energy confinement and the plasma angular momentum while increasing fast ion losses; however, disruptions are not routinely encountered owing to increased levels of injected neutral beam torque. In this regime, n = 1 field compensation leads to recovery of a dominant fraction of the TBM-induced plasma pressure and rotation degradation, and an 80% reduction in the heat load to the first wall. These results show that the n = 1 plasma response plays a dominant role in determining plasma stability, and that n = 1 field compensation alone not only recovers most of the impact on plasma performance of the TBM, but also protects the first wall from potentially damaging heat flux. Despite these benefits, plasma rotation braking from the TBM fields cannot be fully recovered using standard error field control. Given the uncertainty in extrapolation of these results to the ITER configuration, it is prudent to design the TBMs with as low a ferromagnetic mass as possible without jeopardizing the TBM mission

    The digestive performance of mammalian herbivores: why big may not be that much better

    Full text link
    1. A traditional approach to the nutritional ecology of herbivores is that larger animals can tolerate a diet of lesser quality due to a higher digestive efficiency bestowed on them by comparatively long ingesta retention times and lower relative energy requirements. 2. There are important physiological disadvantages that larger animals must compensate for, namely a lower gut surface : gut volume ratio, larger ingesta particle size and greater losses of faecal bacterial material due to more fermentation. Compensating adaptations could include an increased surface enlargement in larger animals, increased absorption rates per unit of gut surface, and increased gut motility to enhance mixing of ingesta. 3. A lower surface : volume ratio, particularly in sacciform forestomach structures, could be a reason for the fact that methane production is of significant scope mainly in large herbivores and not in small herbivores with comparably long retention times; in the latter, the substrate for methanogenesis – the volatile fatty acids – could be absorbed faster due to a more favourable gut surface : volume ratio. 4. Existing data suggest that in herbivores, an increase in fibre digestibility is not necessarily accompanied by an increase in overall apparent dry matter digestibility. This indicates a comparative decrease of the apparent digestibility of non-fibre material, either due to a lesser utilization of non-fibre substrate or an increased loss of endogenous/bacterial substance. Quantitative research on these mechanisms is warranted in order to evaluate whether an increase in body size represents a net increase of digestive efficiency or just a shift of digestive focus

    ITER test blanket module error field simulation experiments at DIII-D

    No full text
    Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L-H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity v across the entire radial profile by as much as Delta upsilon/upsilon similar to 60% via non-resonant braking. Changes to global Delta n/n, Delta beta/beta and Delta H(98)/H(98) were similar to 3 times smaller. These effects are stronger at higher beta. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known n = 1 test field in both L-and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D n = 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few n = 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by n = 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small

    Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

    Get PDF
    This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from an all carbon plasma facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared to their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease of the pedestal confinement but is partially recovered with the injection of nitrogen.Comment: 30 pages, 16 figure
    corecore