105 research outputs found
Bivariate genetic modelling of the response to an oral glucose tolerance challenge: A gene x environment interaction approach
AIMS/HYPOTHESIS: Twin and family studies have shown the importance of genetic factors influencing fasting and 2 h glucose and insulin levels. However, the genetics of the physiological response to a glucose load has not been thoroughly investigated. METHODS: We studied 580 monozygotic and 1,937 dizygotic British female twins from the Twins UK Registry. The effects of genetic and environmental factors on fasting and 2 h glucose and insulin levels were estimated using univariate genetic modelling. Bivariate model fitting was used to investigate the glucose and insulin responses to a glucose load, i.e. an OGTT. RESULTS: The genetic effect on fasting and 2 h glucose and insulin levels ranged between 40% and 56% after adjustment for age and BMI. Exposure to a glucose load resulted in the emergence of novel genetic effects on 2 h glucose independent of the fasting level, accounting for about 55% of its heritability. For 2 h insulin, the effect of the same genes that already influenced fasting insulin was amplified by about 30%. CONCLUSIONS/INTERPRETATION: Exposure to a glucose challenge uncovers new genetic variance for glucose and amplifies the effects of genes that already influence the fasting insulin level. Finding the genes acting on 2 h glucose independently of fasting glucose may offer new aetiological insight into the risk of cardiovascular events and death from all causes
The narrow-sense and common single nucleotide polymorphism heritability of early repolarization.
BACKGROUND: Early repolarization (ER) is a risk marker for sudden cardiac death. Higher risk is associated with horizontal/descending ST-segment ER in the inferior or inferolateral ECG leads. Studies in family cohorts have demonstrated substantial heritability for the ER pattern, but genome-wide association studies (GWAS) have failed to identify statistically significant and replicable genetic signals. METHODS AND RESULTS: We assessed the narrow-sense and common single nucleotide polymorphism (SNP) heritability of ER and ER subtypes using ECG data from 5829 individuals (TwinsUK, BRIGHT and GRAPHIC cohorts). ER prevalence was 8.3%. In 455 monozygous vs 808 dizygous twin pairs, concordances and twin correlations for ER subtypes (except horizontal/descending ST-segment ER) were higher and familial resemblance (except notched ER) was significant. Narrow-sense heritability estimates derived from 1263 female twin pairs using the structural equation program Mx ranged from 0.00-0.47 and common SNP heritability estimates derived from 4009 unrelated individuals of both sexes using Genome-wide Restricted Maximum Likelihood (GREML) ranged from 0.00-0.36, but none were statistically significant. CONCLUSION: From our data, ER shows limited genetic predisposition. There appears to be significant environmental influence and these modest narrow-sense and common SNP heritability estimates may explain why previous GWAS have been unsuccessful
Common genetic variation near the phospholamban gene is associated with cardiac repolarisation:meta-analysis of three genome-wide association studies
To identify loci affecting the electrocardiographic QT interval, a measure of cardiac repolarisation associated with risk of ventricular arrhythmias and sudden cardiac death, we conducted a meta-analysis of three genome-wide association studies (GWAS) including 3,558 subjects from the TwinsUK and BRIGHT cohorts in the UK and the DCCT/EDIC cohort from North America. Five loci were significantly associated with QT interval at P<1×10−6. To validate these findings we performed an in silico comparison with data from two QT consortia: QTSCD (n = 15,842) and QTGEN (n = 13,685). Analysis confirmed the association between common variants near NOS1AP (P = 1.4×10−83) and the phospholamban (PLN) gene (P = 1.9×10−29). The most associated SNP near NOS1AP (rs12143842) explains 0.82% variance; the SNP near PLN (rs11153730) explains 0.74% variance of QT interval duration. We found no evidence for interaction between these two SNPs (P = 0.99). PLN is a key regulator of cardiac diastolic function and is involved in regulating intracellular calcium cycling, it has only recently been identified as a susceptibility locus for QT interval. These data offer further mechanistic insights into genetic influence on the QT interval which may predispose to life threatening arrhythmias and sudden cardiac death
KCND3 potassium channel gene variant confers susceptibility to electrocardiographic early repolarization pattern.
BACKGROUNDThe presence of an early repolarization pattern (ERP) on the surface ECG is associated with risk of ventricular fibrillation and sudden cardiac death. Family studies have shown that ERP is a highly heritable trait, but molecular genetic determinants are unknown.METHODSTo identify genetic susceptibility loci for ERP, we performed a GWAS and meta-analysis in 2,181 cases and 23,641 controls of European ancestry.RESULTSWe identified a genome-wide significant (P < 5 × 10-8) locus in the potassium voltage-gated channel subfamily D member 3 (KCND3) gene that was successfully replicated in additional 1,124 cases and 12,510 controls. A subsequent joint meta-analysis of the discovery and replication cohorts identified rs1545300 as the lead SNP at the KCND3 locus (OR 0.82 per minor T allele, P = 7.7 × 10-12) but did not reveal additional loci. Colocalization analyses indicate causal effects of KCND3 gene expression levels on ERP in both cardiac left ventricle and tibial artery.CONCLUSIONSIn this study, we identified for the first time to our knowledge a genome-wide significant association of a genetic variant with ERP. Our findings of a locus in the KCND3 gene provide insights not only into the genetic determinants but also into the pathophysiological mechanism of ERP, discovering a promising candidate for functional studies.FUNDINGThis project was funded by the German Center for Cardiovascular Research (DZHK Shared Expertise SE081 - STATS). For detailed funding information per study, see the Supplemental Acknowledgments
Genome-Wide Association Study of Circulating Interleukin 6 Levels Identifies Novel Loci
Interleukin-6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery, and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (n{discovery} = 52 654 and n_{replication} = 14 774) individuals of European ancestry. The inverse variance fixed-effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on Chromosome (Chr) 2q14, (pcombined = 1.8 × 10^{−11}), HLA-DRB1/DRB5 rs660895 on Chr6p21 (p_{combined} = 1.5 × 10^{−10}) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (p_{combined} = 1.2 × 10^{−122}). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology
Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption.
Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10-8).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee
PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study
BACKGROUND: Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 diabetes, which in no way offsets their substantial benefits. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 diabetes and related biomarkers to gauge the likely effects of PCSK9 inhibitors on diabetes risk. METHODS: In this mendelian randomisation study, we used data from cohort studies, randomised controlled trials, case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, fasting blood glucose, HbA1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using a standardised analysis plan, meta-analyses, and weighted gene-centric scores. FINDINGS: Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses of four independent PCSK9 variants (rs11583680, rs11591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower LDL cholesterol showed associations with increased fasting glucose (0·09 mmol/L, 95% CI 0·02 to 0·15), bodyweight (1·03 kg, 0·24 to 1·82), waist-to-hip ratio (0·006, 0·003 to 0·010), and an odds ratio for type diabetes of 1·29 (1·11 to 1·50). Based on the collected data, we did not identify associations with HbA1c (0·03%, -0·01 to 0·08), fasting insulin (0·00%, -0·06 to 0·07), and BMI (0·11 kg/m(2), -0·09 to 0·30). INTERPRETATION: PCSK9 variants associated with lower LDL cholesterol were also associated with circulating higher fasting glucose concentration, bodyweight, and waist-to-hip ratio, and an increased risk of type 2 diabetes. In trials of PCSK9 inhibitor drugs, investigators should carefully assess these safety outcomes and quantify the risks and benefits of PCSK9 inhibitor treatment, as was previously done for statins. FUNDING: British Heart Foundation, and University College London Hospitals NHS Foundation Trust (UCLH) National Institute for Health Research (NIHR) Biomedical Research Centre.This work was supported by a British Heart Foundation Programme Grant (RG/10/12/28456). AFS is funded by University College London Hospitals NHS Foundation Trust (UCLH) National Institute for Health Research (NIHR) Biomedical Research Centre (BRC10200) and by a UCL springboard population science fellowship. FWA is supported by a Dekker scholarship-Junior Staff Member 2014T001–Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre. ADH is an NIHR Senior Investigator. Funding information and acknowledgments for studies contributing data are reported in the appendix
Publisher Correction: Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability.
Correction to: Nature Communications https://doi.org/10.1038/s41467-020-19366-9, published online 5 January 2021.
The original version of this Article contained an error in Fig. 2, in which panels a and b were inadvertently swapped.
This has now been corrected in the PDF and HTML versions of the Article
Publisher Correction: Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability.
Correction to: Nature Communications https://doi.org/10.1038/s41467-020-19366-9, published online 5 January 2021.
The original version of this Article contained an error in Fig. 2, in which panels a and b were inadvertently swapped.
This has now been corrected in the PDF and HTML versions of the Article
- …