77 research outputs found

    Haplosporidium Costale (Seaside Organism), A Parasite Of The Eastern Oyster, Is Present In Long Island Sound

    Get PDF
    A haplosporidian parasite, Haplosporidium costale (seaside organism or SSO), is associated with high mortalities of eastern oysters (Crassostrea virginica) in seaside bays of Virginia and Maryland. Its presence in Long Island Sound has been tentatively suggested in several publications for the last 50 y. Positive identification of H. costale and differentiation from another haplosporidian parasite, Haplosporidium nelsoni (MSX), from histological sections is difficult and requires the presence of spores. We detected H. costale spores in 4 out of 5010 (0.08%) oysters collected from Long Island Sound in 1997-1999. In situ hybridization using an oligonucleotide DNA probe designed to detect small subunit ribosomal DNA from Virginia\u27s H. costale reacted positively with tentative H. costale plasmodia in 5 oysters from Long Island Sound. In each case there was a coinfection of H. nelsoni. In Virginia and Maryland, H. costate has historically sporulated in all infected animals in May-June. In Long Island Sound, the rare sporulating cases were detected in October-December, suggesting a different infection cycle

    Lethal marine snow : pathogen of bivalve mollusc concealed in marine aggregates

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of American Society of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 50 (2005): 1983-1988, doi:10.4319/lo.2005.50.6.1983.We evaluated marine aggregates as environmental reservoirs for a thraustochytrid pathogen, Quahog Parasite Unknown (QPX), of the northern quahog or hard clam, Mercenaria mercenaria. Positive results from in situ hybridization and denaturing gradient gel electrophoresis confirm the presence of QPX in marine aggregates collected from coastal embayments in Cape Cod, Massachusetts, where QPX outbreaks have occurred. In laboratory experiments, aggregates were observed and recorded by entering a quahog’s pallial cavity, thereby delivering embedded particles from the water column to its benthic bivalve host. The occurrence of pathogen-laden aggregates in coastal areas experiencing repeated disease outbreaks suggests a means for the spread and survival of pathogens between epidemics and provides a specific target for environmental monitoring of those pathogens.This work was funded by an NSF grant as part of the joint NSF-NIH Ecology of Infectious Disease program, by the Woods Hole Oceanographic Institution (WHOI) Sea Grant Program, under a grant from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and a National Science Foundation Graduate Fellowship to M. Lyons

    Probiotic strains for disease management in hatchery larviculture of the eastern oyster Crassostrea virginica

    Get PDF
    Bacterial pathogens are a major cause of mortality in bivalve hatcheries, and outbreaks can result in shortages of seed supply to the grow-out industry. The use of probiotic bacteria is a potential preventative measure to limit the impact of bacterial diseases. Previous research showed that the marine bacteria Phaeobacter inhibens S4 (S4) and Bacillus pumilus RI06—95 (RI) protect larval eastern oysters (Crassostrea virginica) when challenged with the pathogens Vibrio tubiashii RE22 (now Vibrio coralliilyticus RE22) and Roseovarius crassostreae CV919-312T. In this study, these probiotic bacteria were tested under hatchery conditions. Daily addition of S4 and RI (104 colony forming units (CFU)/ml) to 100-l culture tanks resulted in a significant decrease in the levels of total Vibrios in water and tank surfaces (P < 0.05), but not in oysters. Larval growth and survival was unaffected by the probiotic treatments. Larvae treated with probiotics in the hatchery showed significantly less mortality than larvae from control tanks when exposed to 105 CFU/ml of V. coralliilyticus RE22 for 24 h in a laboratory challenge. These results suggest that S4 and RI are safe and potentially effective tools to limit disease outbreaks in oyster hatcheries

    Gene expression in American lobster (Homarus americanus) with epizootic shell disease

    Get PDF
    Author Posting. © National Shellfisheries Association, 2012. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 31 (2012): 505-513, doi:10.2983/035.031.0210.Epizootic shell disease (ESD) has been reported widely in American lobster (Homarus americanus, Milne Edwards) in southern New England. The appearance of irregular, deep lesions—characteristic of ESD—has been associated previously with elevated levels of ecdysteroids and premature molting, but the underlying molecular and physiological changes associated with ESD remain poorly understood. Previously, we identified several genes, including arginine kinase and hemocyanin, that were expressed differentially in lobsters exhibiting signs of ESD (diseased) versus those lobsters exhibiting no signs of ESD (assumed healthy), and quantified their expression. In this study, we extend these findings and measure expression of a suite of 12 genes in tissues from 36 female lobsters of varying disease condition. In addition, molt stage is evaluated as a possible confounding factor in the expression of the selected genes. The expression of several genes changed significantly with disease stage. Arginine kinase expression decreased significantly in thoracic muscle of lobsters with signs of ESD. Ecdysteroid receptor expression was elevated significantly in both muscle and hepatopancreas of lobsters with signs of ESD. CYP45, a cytochrome P450 form that was shown previously to covary with ecdysteroid levels and to be inducible by some xenobiotics, showed significantly increased expression in hepatopancreas of lobsters with signs of ESD. Together, these results demonstrate that the expression of several genes is altered in lobsters showing signs of ESD, even when accounting for variation in molt stage. Given the observed changes in ecdysteroid receptor, arginine kinase, and CYP45 expression, further investigations of the association, if any, between molting, muscular function and xenobiotic metabolism and ESD are warranted.This work was supported by the National Marine Fisheries Service as the New England Lobster Research Initiative: Lobster Shell Disease under NOAA grant NA06NMF4720100 to the University of Rhode Island Fisheries Center

    Endocrine-disrupting alkylphenols are widespread in the blood of lobsters from southern New England and adjacent offshore areas

    Get PDF
    Author Posting. © National Shellfisheries Association , 2012. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 31 (2012): 563-571, doi:10.2983/035.031.0216.Endocrine-disrupting pollutants in rivers and oceans represent a poorly understood but potentially serious threat to the integrity of aquatic and coastal ecosystems. We surveyed the hemolymph of lobsters from across southern New England and adjacent offshore areas for 3 endocrine-disrupting alkylphenols. We found all 3 compounds in hemolymph from every year and almost every region sampled. Prevalence of contamination varied significantly between regions, ranging from 45% of lobsters from southern Massachusetts to 17% of lobsters from central Long Island Sound. Mean contamination levels varied significantly as a function of region, year sampled, and collection trip, and were highest overall in lobsters from western Long Island Sound and lowest in lobsters from central Long Island Sound. Surprisingly, lobsters from offshore areas were not less contaminated than lobsters from inshore areas. Contamination levels also did not vary as a function of lobster size or shell disease signs. Contaminated lobsters held in the laboratory did not retain alkylphenols, suggesting that hemolymph contamination levels represent recent, rather than long-term, exposure. Our data set is the first, to our knowledge, to survey endocrine-disrupting contaminants in a population across such a broad temporal and spatial scale. We show that alkylphenol contamination is a persistent, widespread, but environmentally heterogeneous problem in lobster populations in southern New England and adjacent offshore areas. Our work raises serious questions about the prevalence and accumulation of these endocrine-disrupting pollutants in an important fishery species.This work was supported by the National Marine Fisheries Service as the New England Lobster Research Initiative: Lobster Shell Disease under NOAA grant NA06NMF4720100 to the University of Rhode Island Fisheries Center

    Modeling and mapping isotopic patterns in the Northwest Atlantic derived from loggerhead sea turtles

    Get PDF
    Stable isotope analysis can be used to infer geospatial linkages of highly migratory species. Identifying foraging grounds of marine organisms from their isotopic signatures is becoming de rigueur as it has been with terrestrial organisms. Sea turtles are being increasingly studied using a combination of satellite telemetry and stable isotope analysis; these studies along with those from other charismatic, highly vagile, and widely distributed species (e.g., tuna, billfish, sharks, dolphins, whales) have the potential to yield large datasets to develop methodologies to decipher migratory pathways in the marine realm. We collected tissue samples (epidermis and red blood cells) for carbon (delta C-13) and nitrogen (delta N-15) stable isotope analysis from 214 individual loggerheads (Caretta caretta) in the Northwest Atlantic Ocean (NWA). We used discriminant function analysis (DFA) to examine how well delta C-13 and delta N-15 classify loggerhead foraging areas. The DFA model was derived from isotopic signatures of 58 loggerheads equipped with satellite tags to identify foraging locations. We assessed model accuracy with the remaining 156 untracked loggerheads that were captured at their foraging locations. The DFA model correctly identified the foraging ground of 93.0% of individuals with a probability greater than 66.7%. The results of the external validation (1) confirm that assignment models based on tracked loggerheads in the NWA are robust and (2) provide the first independent evidence supporting the use of these models for migratory marine organisms. Additionally, we used these data to generate loggerhead-specific delta C-13 and delta N-15 isoscapes, the first for a predator in the Atlantic Ocean. We found a latitudinal trend of delta C-13 values with higher values in the southern region (20-25 degrees N) and a more complex pattern with delta N-15, with intermediate latitudes (30-35 degrees N) near large coastal estuaries having higher delta N-15-enrichment. These results indicate that this method with further refinement may provide a viable, more spatially-explicit option for identifying loggerhead foraging grounds

    Finfish and aquatic invertebrate pathology resources for now and the future

    Get PDF
    Utilization of finfish and aquatic invertebrates in biomedical research and as environmental sentinels has grown dramatically in recent decades. Likewise the aquaculture of finfish and invertebrates has expanded rapidly worldwide as populations of some aquatic food species and threatened or endangered aquatic species have plummeted due to overharvesting or habitat degradation. This increasing intensive culture and use of aquatic species has heightened the importance of maintaining a sophisticated understanding of pathology of various organ systems of these diverse species. Yet, except for selected species long cultivated in aquaculture, pathology databases and the workforce of highly trained pathologists lag behind those available for most laboratory animals and domestic mammalian and avian species. Several factors must change to maximize the use, understanding, and protection of important aquatic species: 1) improvements in databases of abnormalities across species; 2) standardization of diagnostic criteria for proliferative and nonproliferative lesions; and 3) more uniform and rigorous training in aquatic morphologic pathology

    Finfish and aquatic invertebrate pathology resources for now and the future

    Get PDF
    Utilization of finfish and aquatic invertebrates in biomedical research and as environmental sentinels has grown dramatically in recent decades. Likewise the aquaculture of finfish and invertebrates has expanded rapidly worldwide as populations of some aquatic food species and threatened or endangered aquatic species have plummeted due to overharvesting or habitat degradation. This increasing intensive culture and use of aquatic species has heightened the importance of maintaining a sophisticated understanding of pathology of various organ systems of these diverse species. Yet, except for selected species long cultivated in aquaculture, pathology databases and the workforce of highly trained pathologists lag behind those available for most laboratory animals and domestic mammalian and avian species. Several factors must change to maximize the use, understanding, and protection of important aquatic species: 1) improvements in databases of abnormalities across species; 2) standardization of diagnostic criteria for proliferative and nonproliferative lesions; and 3) more uniform and rigorous training in aquatic morphologic pathology

    Cytochrome P450 induced differentially in endothelial cells cultured from different organs of Anguilla rostrata

    Get PDF
    Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Society for In Vitro Biology for personal use, not for redistribution. The definitive version was published in In Vitro Cellular & Developmental Biology - Animal 41 (2005): 57-63, doi:10.1290/0409063.1.Endothelial cells are a structural barrier and an active regulator of many bodily processes. CYP1A activity is induced in the endothelium of teleosts and mammals exposed to lipophilic xenobiotics, such as polycyclic aromatic hydrocarbons, and can have significant consequences for endothelial functions. We exposed cultures of characterized endothelial cells from the heart, kidney and rete mirabile of the eel, Anguilla rostrata, to AhR agonists. In heart endothelial cells the maximum response (based on EROD activity) to TCDD, 113 pmol/mg-min, was at 1 nM TCDD and the peak response to βNF, 135 pmol/mg-min, was at 3 μM βNF. The maximum response to TCDD in the kidney endothelial cells is 12 pmol/mg-min at 0.3 nM TCDD. The rete mirabile capillary endothelial cells responded minimally or not at all to exposure to TCDD and βNF. Both the heart and kidney endothelial cells (but not the rete mirabile capillary cells) have a low level of EROD activity (12.7 and 5.2 pmol/mg-min respectively) in untreated or DMSO-treated cells. The robust response of the heart endothelial cells to induction and the lack of response in the rete mirabile capillary endothelial cells indicate that these cells are a good resource to use to investigate the physiological consequences of AhR agonist exposure and CYP1A induction in different areas of the vasculature.The Faculty Research Council of Fordham University provided partial support for RAG. This research was supported by NIH grant 5-P42-ES07381 and by U.S.EPA grant R827102-01-0

    New cytochrome P450 1B1, 1C2 and 1D1 genes in the killifish Fundulus heteroclitus : Basal expression and response of five killifish CYP1s to the AHR agonist PCB126

    Get PDF
    Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Aquatic Toxicology 93 (2009): 234-243, doi:10.1016/j.aquatox.2009.05.008.Knowledge of the complement of cytochrome P450 (CYP) genes is essential to understanding detoxification and bioactivation mechanisms for organic contaminants.We cloned three new CYP1 genes, CYP1B1, CYP1C2 and CYP1D1, from the killifish Fundulus heteroclitus, an important model in environmental toxicology. Expression of the new CYP1s along with previously known CYP1A and CYP1C1 was measured by qPCR in eight different organs. Organ distribution was similar for the two CYP1Cs, but otherwise patterns and extent of expression differed among the genes. The AHR agonist 3,3_,4,4_,5-pentachlorobiphenyl (PCB126) (31 pmol/g fish) induced expression of CYP1A and CYP1B1 in all organs examined, while CYP1C1 was induced in all organs except testis. The largest changes in response to PCB126 were induction of CYP1A in testis (~700-fold) and induction of CYP1C1 in liver (~500-fold). CYP1B1 in liver and gut, CYP1A in brain and CYP1C1 in gill also were induced strongly by PCB126 (>100-fold). CYP1C1 expression levels were higher than CYP1C2 in almost all tissues and CYP1C2 was much less responsive to PCB126. In contrast to the other genes, CYP1D1 was not induced by PCB126 in any of the organs. The organ-specific response of CYP1s to PCB126 implies differential involvement in effects of halogenated aromatic hydrocarbons in different organs. The suite of inducible CYP1s could enhance the use of F. heteroclitus in assessing aquatic contamination by AHR agonists. Determining basal and induced levels of protein and the substrate specificity for all five CYP1s will be necessary to better understand their roles in chemical effects and physiology.This study was supported in part by NIH grants JJS (the Superfund Basic Research Program 5P42ES007381 and R01ES015912) and MJJ (K99ES017044-01)
    corecore