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ABSTRACT Endocrine-disrupting pollutants in rivers and oceans represent a poorly understood but potentially serious threat to

the integrity of aquatic and coastal ecosystems. We surveyed the hemolymph of lobsters from across southern New England and

adjacent offshore areas for 3 endocrine-disrupting alkylphenols. We found all 3 compounds in hemolymph from every year and

almost every region sampled. Prevalence of contamination varied significantly between regions, ranging from 45% of lobsters from

southern Massachusetts to 17% of lobsters from central Long Island Sound. Mean contamination levels varied significantly as

a function of region, year sampled, and collection trip, andwere highest overall in lobsters fromwestern Long Island Sound and lowest

in lobsters from central Long Island Sound. Surprisingly, lobsters from offshore areas were not less contaminated than lobsters from

inshore areas. Contamination levels also did not vary as a function of lobster size or shell disease signs. Contaminated lobsters held in

the laboratory did not retain alkylphenols, suggesting that hemolymph contamination levels represent recent, rather than long-term,

exposure. Our data set is the first, to our knowledge, to survey endocrine-disrupting contaminants in a population across such

a broad temporal and spatial scale. We show that alkylphenol contamination is a persistent, widespread, but environmentally

heterogeneous problem in lobster populations in southern New England and adjacent offshore areas. Our work raises serious

questions about the prevalence and accumulation of these endocrine-disrupting pollutants in an important fishery species.
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INTRODUCTION

Alkylphenols are vertebrate and inve/rtebrate estrogenic en-

docrine disruptors (Biggers & Laufer 2004, Laufer et al. 2012a)
widely used in the production of alkylphenol ethoxylates, which
are used in industrial and household detergents, surfactants,

paints, wetting agents, wood pulping, textile manufacture,
plastic manufacture, petroleum recovery, and phenolic resins;
as antioxidants, polymer stabilizers, and curing agents; and in
many other products (Naylor et al. 1992, Naylor 1995, Ying

et al. 2002, Soares et al. 2008). Worldwide annual alkylphenol
production was estimated to be 500,000 t and increasing in 1997
(Ying 2006), and a large proportion of this material ends up in

aquatic or marine environments via discharge from wastewater
treatment plants or industry (Soares et al. 2008, David et al. 2009,
Harman et al. 2011). Alkylphenol contamination has been

reported widely in both freshwater (Soares et al. 2008) and
marine (David et al. 2009) ecosystems, particularly in sediments
and filter-feeding organisms (e.g., Hale et al. 2000, Munshi et al.
2009, Bouzas et al. 2011). Alkylphenols were also detected in the

urine of 95% of humans tested in 2004 (Calafat et al. 2005).
Widespread environmental contamination by alkylphenols

is increasingly seen as a serious public health concern because

of their high potential to act as endocrine disruptors (Crain et al.
2007, vom Saal et al. 2007). Alkylphenol exposure has been tied

to fertility problems, carcinogenic effects, feminization, and a
host of other health problems (vom Saal et al. 2007, Soares et al.
2008, David et al. 2009, Meier et al. 2011). In this article, we
explore exposure in the American lobster (Homarus americanus,

Milne Edwards), a commercially and culturally important fishery
in southern New England.

Laufer et al. (2004) previously isolated 4 alkylphenolic

compounds from the hemolymph of lobsters from Long Island
Sound (LIS). The compounds were identified as 2-t-butyl-4-
(dimethylbenzyl)phenol (compound 1), 2,6-bis-(t-butyl)-4-

(dimethylbenzyl)phenol (compound 2), 2,4-bis-(dimethylbenzyl)
phenol (compound 3), and 2,4-bis-(dimethylbenzyl)-6-t-butylphenol
(compound 4) (Biggers & Laufer 2004). All 4 of these compounds

had juvenile hormone activity, inducingmetamorphosis in larvae of
the annelid Capitella (Biggers & Laufer 1996, Biggers & Laufer
1999, Biggers & Laufer 2004). Juvenile hormone and its crusta-
cean analog, methyl farnesoate, regulate metamorphosis and

molting in arthropods (Laufer et al. 1987, Riddiford 1994). All 4
compounds were also detected at high levels in marine sediments
from a broad geographical area in the northwest Atlantic

(reviewed in Biggers & Laufer (2004)).
Alkylphenols have the potential to affect lobsters negatively

in several ways: through disruption of tanning and sclerotiza-

tion during molting (e.g., Sacher 1971, Zomer & Lipke 1981,
Sugumaran et al. 1992), and through endocrine disruption (e.g.,
Sumpter 1995, Hayes et al. 2006, Johnson et al. 2008, Ostrach

et al. 2008, Planello et al. 2008, Ramakrishnan & Wayne 2008,
Zhang et al. 2008, Meier et al. 2011). Laufer et al. (2012b) have
demonstrated that alkylphenols are incorporated into lobster
cuticles during molting, and that this is correlated with weaker

cuticular structure, possibly because of interference with protein
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cross-linking during shell hardening. If weaker shells are more
susceptible to microbial invasion, then this may provide a

mechanistic link between these pollutants and shell disease
(Smolowitz et al. 2005).

Endocrine-disrupting activity on lobsters has been demon-
strated for compound 3 and the related alkylphenol bispheno

A. Larval lobsters exposed to 5 ng/day or 10 ng/day of
alkylphenols in their diets experienced abnormal metamorpho-
sis, as well as reduced survival and delay of metamorphosis

(Laufer et al. 2012a). Compound 2 has been shown to disrupt
sclerotization and metamorphosis of mosquito larvae, even at
relatively low (0.1 ppm) doses (Sacher 1971, Zomer & Lipke

1981, Semensi & Sugumaran 1986). Larval crabs exposed to
compound 2 also experienced high mortality and behavioral
effects on swimming speed and phototaxis (Forward & Costlow
1976).

The purpose of the current study was to assess alkylphenol
levels in lobsters by measuring spatial and temporal patterns of
contamination in the hemolymph of lobsters from southern

New England and adjacent offshore waters. We compared
prevalence and severity of contamination between geograph-
ical areas, over time, and between collection trips. We looked

for correlations between alkylphenol levels and shell disease
status, as well as carapace length. We also held lobsters in
the laboratory to measure retention time of alkylphenols in

hemolymph. To our knowledge, this is the first long-term and
large-scale study of alkylphenol contamination in a marine
population.

MATERIALS AND METHODS

Animals

We obtained 766 lobsters from commercial fishermen,
the Connecticut Department of Environmental Protection,

Millstone Environmental Laboratory, University of Rhode
Island and Rhode Island Department of Environmental Man-
agement, and the Massachusetts Division of Marine Fisheries
during 2002 to 2008. Lobsters were from 1 of 7 regions (Fig. 1):

western LIS (LIS West); central LIS (LIS Central); eastern LIS
(LIS East); Narragansett Bay, RI (RI); Buzzards Bay or
Vineyard Sound, MA (MA South); Cape Cod Bay; or offshore

between Munson Canyon and the Hague Line (Offshore). The
number of sampling trips for each region for each year can be
found in Figure 2.

On delivery, lobsters were bled and maintained in cooled
running seawater (circa 18 ± 2�C) in A-frame fiberglass tanks
at the Marine Biological Laboratory, Woods Hole, MA, or in

fiberglass tanks filled with recirculating artificial seawater
equipped with aeration and biofilters at the University of
Connecticut. The animals were fed 3 times per week with fish
or squid.

Hemolymph samples (2–4 mL) were taken from the dorsal
heart of each lobster with 5-mL plastic syringes and 23-gauge
needles, and then transferred to 15-mL Pyrex test tubes

containing an ice-cold mixture of acetonitrile (2 mL) and an
aqueous 4% NaCl solution (2 mL). Samples were mixed and

Figure 1. Prevalence (dark portions of pie charts) of alkylphenol contamination across southern New England and adjacent offshore areas. Pie charts

are proportional to total sample size (n). Medians are for contaminated lobsters only. Bar charts show proportion of contaminated lobsters containing

compounds 1, 3, and 4, labeled by number.
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stored at –20�C before preparation for analysis. Many of the

lobsters were bled multiple times after capture for the purposes
of a separate experiment (Laufer et al. unpubl. data). To obtain
an indication of how contaminant levels may change over time

in lobster hemolymph, we searched our database of analyzed
hemolymph samples to identify 14 lobsters that were initially
contaminated and had been retested within 2 mo of capture. Of
these, 1 was retested after 7 days, 7 were retested after 20 days,

and 7 were retested after 40 days.

Chemicals and Materials

High purity standards of 4-cumylphenol (also known as
4-dimethylbenzylphenol), compound 3, and the chemical stan-

dard phenanthrene were purchased from Matheson, Coleman,
& Bell; the chemical standard biphenyl was purchased from
Sigma-Aldrich. Compounds 1, 2, and 4 were synthesized in the

laboratory as described by Biggers & Laufer (2004). HPLC-
grade acetonitrile, acetone, ether, hexane, methanol, and meth-
ylene chloride were purchased fromFisher Chemical Corporation.

The cartridges used for solid-phase extraction (SPE) were Envi-
Chrom P (Supelco/Aldrich) hydrophobic cartridges with 250 mg
styrene divinylbenzene.

Analytical Procedures

Samples were prepared as described by Laufer et al. (2005).
We processed 16 samples at a time using microwave-assisted

extraction in 20 mL 1:1 methanol:methylene chloride. Extracts

were filtered through Fisherbrand P5 filter paper (porosity,
medium; flow rate, slow) to remove particulates, and the
filtrate was collected in a 40-mL volatile organic analysis vial

and vortexed with 5 mL aqueous 0.9% KCl to salt out the
organic analytes into the organic solvent layer. The top
(aqueous) phase of each sample was pipetted into a 100-mL
volumetric flask and set aside, and the bottom (methylene

chloride) phase was evaporated to dryness overnight under a
stream of nitrogen gas. Dried samples were resuspended in
1.5 mL methanol, recombined with the aqueous phase, and

diluted to 100 mL with pH 2 deionized water and 0.5g NaCl
prior to SPE.

SPE cartridges were activated with 335 mL methanol and

then conditioned with 3 3 5 mL pH 2 deionized water. We
added each 100-mL extract to an SPE cartridge at a flow rate
of about 1 mL/min under vacuum. Loaded cartridges were
rinsed with 335mL pH 2 deionized water and then dried for at

least 30 min under a stream of nitrogen gas. We eluted each
sample with 432 mL methanol into a 10-mL glass tube, then
the eluates were evaporated to dryness overnight under a

stream of nitrogen gas.
Dried samples were resuspended in 100 mL methanol plus

0.100 mg/mL of biphenyl and phenanthrene, both used as

internal standards, and transferred carefully to 300-mL glass
inserts with polymer feet (Agilent 5181–1270) placed in 1.5 mL
amber GC/MS screw-cap vials (Agilent 5182–0716) with

Figure 2. Log alkylphenol concentration (measured in nanograms per milliliter) plotted over time for each region. Each point represents an individual

lobster. Collection trips within each year are offset. Pie charts below show the prevalence of alkylphenols and gray bars show mean contamination level

for lobsters from that region in that year for all collection trips combined.
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Teflon-lined septae (Agilent 5182–0725), using 2350-mL rinses
of methanol for a total sample volume of 200 mL.

Gas Chromatography/Mass Spectroscopy

One microliter of the final extract was injected into either a

Finnigan MAP/Thermo gas chromatograph/ion trap mass
spectrometer (San Jose, CA) or a Hewlett-Packard (now
Agilent, Wilmington, DE) 5890 Series II Gas Chromatograph

paired with a 5970Mass Selective Detector operating under HP
Standard ChemStation, version A 0.300, 1986–1996. Separa-
tion of the compounds was achieved using either anAgilentDB-

5MS capillary column or a Thermo/Fischer TR-1/MS capillary
column. Columns measured 30 m3 0.25 mm3 0. 25-mm film
thickness, and used either a methyl/phenyl or a methyl/silicone
liquid phase. Helium was used as the carrier gas. The operating

conditions forGCwere an initial temperature of 50�C for 2min,
followed by a 15�C/min ramp to 250�C, followed by a second
temperature ramp to 270�C at 5�C/min, and finally a 5-min hold

at 270�C to bake the column. In each case, we used a splitless
injection, set at 240�C with the M.S. interface maintained at
280�C.

Analysis by mass spectrometer was performed using the
selective ion monitoring mode, and quantification was performed
as described by Laufer et al. (2005), but with phenanthrene

(M.S. 178) as the internal standard. The detection limit of the
method (determined using the lowest concentration of each
standard giving a signal-to-noise ratio of 3:1) was # 1 ng/mL
for each compound, and we recalibrated every 2–3 mo using

known standards to ensure that results from different years and
different GC/MS equipment were comparable. Percent recov-
eries were determined by spiking the 3 different compounds at

various levels with the same concentration at each level of the
internal standard using uncontaminated lobster blood. Percent
recovery ±SD for the entire method (extraction + purification +
GC/MS) based on positive controls with known standards was
21 ± 16% for compound 1, 27 ± 4% for compound 3, and 29 ±
15% for compound 4. Compound 2 was excluded from the
study because percent recoveries were too low (<5%). Although

recoveries from biological samples are typically lower than
recoveries from water or sediment samples (e.g., Mouatassim-
Souali et al. 2003) because of additional purification steps such

as filtration, SPE clean-up and concentration, and blow-down
steps (Gadzala-Kopciuch et al. 2008), our recoveries for com-
pounds 1, 3, and 4 are still lower than would be considered ideal

for this type of analysis. Thus, our findings for both the prev-
alence of and concentration levels of these alkylphenols repre-
sent extremely conservative estimates.

Statistical Analysis

All statistical tests were performed using JMP 6.0 (SAS

Institute, Inc). We calculated the proportion of contaminated
lobsters from each collection trip that returned at least 4 lobsters,
and then analyzed prevalence of contaminants in lobster hemo-

lymph as a function of year and region using a 2-factor nested
analysis of variance on arc-sin square root-transformed pro-
portions, with year and region nested within year as the fixed

factors. We excludedMA South (all years), Offshore (all years),
LIS West (2006), and Cape Cod Bay (2005) because we did not
have data from more than 1 collection trip for those regions in

those years. This left a total of 55 collection trips in the analysis,
which we performed for total alkylphenols and also individually

for each of the 3 compounds. Because we did not find an effect
of year in any of these analyses (Table 1), we then compared
prevalence of contaminants between all regions using a 1-factor
analysis of variance, which allowed us to expand the analysis

to include regions for which we only had data from a single
collection trip each year (MA South and Offshore).

We compared variation in log-transformed alkylphenol con-

centrations recovered from hemolymph between years and
collecting trips, and as a function of lobster size and shell
disease status for each region separately using a 3-factor nested

analysis of covariance on log-transformed data with year,
collecting trip (nested within year), and shell disease status as
fixed factors, and carapace length as a covariate. Within each
region, years without at least 2 collection trips were excluded

(Fig. 2, Table 2). We were not able to test the effects of year for
Rhode Island or Cape Cod Bay because we did not have more
than 1 y with multiple collection trips for either location. For

RI, we included 6 collection trips from 2007, and for Cape Cod
Bay we included 1 collection trip from 2005 and 3 from 2008.
We were unable to test the effects of collection trip for MA

South and Offshore because we only obtained lobsters from 1
collection trip per year for these regions.

We used a 3-factor nested analysis of variance to assess

variation in log-transformed alkylphenol levels in hemolymph
as a function of region (LISWest, LIS Central, or LIS East) and
year (2003, 2004, 2005, and 2007). These were the only region3
year combinations for which we had adequate sample sizes for a

full factorial analysis. We also used nested 2-factor analyses of
variance to compare log-transformed alkylphenol contaminant
levels in lobsters between RI and LIS locations in 2007, and

between Cape Cod Bay and LIS East in 2008. Because we
obtained lobsters from only 1 collection trip per year in MA
South and Offshore, we were unable to compare mean contam-

inant levels statistically in these lobsters with those from other
regions.

Using a data set that included only contaminated lobsters,
we compared the proportion of total contamination accounted

for by compounds 1 and 3, the most widespread contaminants,
as a function of year and region using an analysis of covariance.
Lobsters that did not test positive for at least 1 contaminant,

and region3 year blocks that contained fewer than 3 lobsters,
were excluded from the analysis, leaving a total sample size of

TABLE 1.

Analysis of variance in prevalence of contamination for each

compound, and for all compounds lumped together, as a func-

tion of year and region with region nested within year.

Compound df Variable F P

All 4 Year 1.517 0.199

12 Region(year) 1.335 0.248

C1 4 Year 2.217 0.062

12 Region(year) 0.908 0.536

C34 4 Year 0.605 0.725

12 Region(year) 1.593 0.146

C4 4 Year 1.489 0.208

12 Region(year) 1.614 0.140
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208 lobsters. The log-transformed contaminant level of com-
pound 1 was the dependent variable, with year and region as
fixed factors and the log-transformed level of compound 3
contamination as the covariate.

RESULTS

Alkylphenols Are Widely Distributed

We found alkylphenols in the hemolymph of lobsters from
all areas examined. Overall, we found alkylphenols in the
hemolymph of 252 of 766 lobsters (33%). Compound 3 was the

most pervasive contaminant (24% of all lobsters sampled),
followed by compound 1 (19%) and compound 4 (15%). Of the
252 contaminated lobsters, 111 (44%) were contaminated with 1

alkylphenol, 66 (26%) were contaminated with 2 alkylphenols,
and 75 (30%) were contaminated with all 3 alkylphenols.

Prevalence of alkylphenols in lobster hemolymph was not
significantly different between regions or years, either for all

compounds combined or for individual compounds (Table 1).
Overall prevalence of alkylphenols in hemolymph ranged from
18% in LIS Central to 46% inMA South (Fig. 1). Prevalence of

compound 1 ranged from 13% (LIS East) to 43% (MA South),
prevalence of compound 3 ranged from 14% (LIS Central) to
34% (MA South), and prevalence of compound 4 ranged from

3% (LIS Central) to 22% (Offshore). Although MA South and
Offshore had some of the highest overall prevalence of con-
taminants, when these regions were included in a reduced

analysis with ‘‘year’’ excluded (see Materials and Methods),
prevalence of alkylphenols was still not significantly different
between regions, either for all compounds combined (F6,58¼ 1.46,
P¼ 0.21) or for compounds 1 (F6,58¼ 1.08,P¼ 0.38), 3 (F6,58¼
1.25, P ¼ 0.29), or 4 (F6,58 ¼ 1.03, P ¼ 0.41).

The number of lobsters per collection trip varied between 4
and 29, with a median value of 10 lobsters per trip. We did not

observe a relationship between sample size of a trip and the
proportion of lobsters from that trip that were contaminated
(R2 ¼ 0.004), suggesting that small sample sizes did not

underestimate or overestimate systematically the prevalence
of contamination.

Alkylphenol Concentrations Vary Spatially and Temporally

Levels of alkylphenols in lobster hemolymph were extremely
variable and ranged from our detection limit of 1 ng/mL to

4,930 ng/mL (Figs. 1 and 2). Within regions, mean alkylphenol
levels varied significantly as a function of year and collection
trip, but not carapace length or shell disease status (Table 2).
Temporal trendswere different for different regions (Figs. 2 and 3).

In LIS West, mean alkylphenol levels declined steadily between
2003 and 2008.We did not detect any alkylphenols in LISCentral
in 2003, but observed a decline between 2004 and 2007. In LIS

East, alkylphenol levels fluctuated between 2002 and 2008.
Interestingly, mean alkylphenol levels increased in 2008 for all
regions sampled in that year (LIS East, MA South, Cape Cod

Bay, and Offshore).
Alkylphenol levels also varied significantly between regions.

Within LIS, total contaminant levels (F2,364 ¼ 16.70, P < 0.0001)

and levels of compound 3 (F2,364 ¼ 16.32, P < 0.0001) were
highest in LISWest, intermediate in LIS East, and lowest in LIS
Central. Similarly, levels of compound 4 were higher in LIS
West and LIS East compared with LIS Central (F2,364 ¼ 14.66,

P < 0.0001). Levels of compound 1, however, did not vary
significantly as a function of region within LIS (F2,364 ¼ 0.06,
P ¼ 0.95).

There was no significant difference in the level of total
contamination (F3,175 ¼ 1.86, P ¼ 0.14) or in the level of
compound 3 (F3,175 ¼ 0.67, P¼ 0.57) between lobsters from RI

and lobsters from LIS locations in 2007 (the only year in which
RI was sampled). However, in that same year, RI lobsters had
significantly higher levels of compound 1 compared with those
from LIS East and LISWest (with LIS Central as intermediate;

F3,175 ¼ 6.36, P¼ 0.0004), and there was also a strong trend for
higher levels of compound 4 in RI lobsters compared with LIS
lobsters (F3,175 ¼ 2.38, P ¼ 0.07). Levels were not significantly

different between Cape Cod Bay and LIS East in 2008 for total
alkylphenols (F1,57¼ 0.12,P¼ 0.73), compound 1 (F1,57¼ 1.15,
P ¼ 0.29), compound 3 (F1,57 ¼ 1.27, P ¼ 0.27), or compound

4 (F1,57 ¼ 2.47, P ¼ 0.12).
Among contaminated lobsters, the median level of alkyl-

phenols was highest in Cape Cod Bay (31 ng/mL) and lowest in

TABLE 2.

Analysis of variance in mean contamination levels as a function of year, collection trip, carapace length, and shell disease status,
summarized separately for each region with collecting trip nested within year.

Region

Years

Included

Source of Variation

Year Collecting Trip Carapace Length Shell Disease

LIS west 2003–2005,

2007

F3,142 ¼ 10.89, P < 0.0001 F7,142 ¼ 4.699, P < 0.0001 F1,142 ¼ 0.204, P ¼ 0.6520 F1,142 ¼ 0.048, P ¼ 0.827

LIS central 2003–2005,

2007

F3,96 ¼ 4.117, P$ 0.0054 F6,96 ¼ 8.812, P$ 0.0003 F1,96 ¼ 0.004, P ¼ 0.9042 F1,96 ¼ 0.006, P ¼ 0.9407

LIS east 2002–2008 F6,248 ¼ 38.24, P$ <0.0001 F17,248 ¼ 73.13, P < 0.0001 F1,248 ¼ 0.112, P ¼ 0.5325 F1,248 ¼ 0.059, P ¼ 0.8089

Rhode Island 2007 — F5,83 ¼ 3.870, P$ 0.0035 F1,83 ¼ 0.000, P ¼ 0.9985 F1,83 ¼ 0.426, P ¼ 0.5162

Massachusetts

south

2005, 2006,

2008

F2,59 ¼ 35.42, P < 0.0001 — F1,59 ¼ 1.081, P ¼ 0.3030 F1,59 ¼ 0.060, P ¼ 0.8068

Cape Cod

Bay

2005, 2008 — F3,47 ¼ 8.240, P$ 0.0002 F1,47 ¼ 1.367, P ¼ 0.2490 F1,47 ¼ 2.145, P ¼ 0.1505

Offshore 2003, 2006,

2008

F2,45 ¼ 6.995, P$ 0.0024 — F1,45 ¼ 0.0001, P ¼ 0.9920 F1,45 ¼ 0.0155, P ¼ 0.9016

Fx,y are the F statistic and the numerator and denominator degrees of freedom. P values in bold type are significant at a ¼ 0.05.
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RI (5.2 ng/mL; Fig. 1). Maximum alkylphenol level was highest

in LIS East (4,930 ng/mL) and lowest in RI (60 ng/mL; Fig. 1).
However, all these spatial trends varied greatly from year to
year (Fig. 2). Contamination by compound 1 was not signifi-

cantly correlated overall with contamination by compound
3 (F1,208 ¼ 2.72, P ¼ 0.10), but we did observe significant
interactions between compound 3 levels and year (F5,208 ¼ 3.16,

P¼ 0.01) and between compound 3 levels and region (F6,208 ¼
4.69, P ¼ 0.0002). Compound 1 displayed significantly higher
levels of contamination in 2005 and 2008 compared with other

years (F5,208 ¼ 19.82, P < 0.0001), and constitutes the highest

proportion of contaminants recovered from lobsters in those
years (Fig. 3). In contrast, compound 3 was found in the highest
proportions among contaminated lobsters in 2003, 2006, and

2007 (Fig. 3). Regional patterns are difficult to interpret
because different regions were sampled in different years, but
compound 3 generally constituted a higher proportion of the

contamination load for lobsters collected from western regions
compared with lobsters collected from eastern regions (Fig. 3).

Alkylphenols Do Not Accumulate in Hemolymph

Alkylphenols disappeared from the hemolymph of many
initially contaminated lobsters after they were held in the lab-
oratory. We found that alkylphenols disappeared from the he-

molymph of the single lobster tested after 6 days, 4 of 7 lobsters
tested after 20 days, and 4 of 7 lobsters tested after 40 days
(Table 3).

DISCUSSION

We detected all 3 alkylphenolic compounds in the hemo-

lymph of lobsters from every region and in every year sampled.
This suggests that these pollutants are ubiquitous and may
be difficult to trace to any particular source. Although both
prevalence and level of alkylphenols were extremely variable,

some broad temporal and geographical patterns do emerge.
Lobsters from the easternmost areas (MA South, Cape Cod

Bay, and Offshore) had higher concentrations of compound 1

compared with compounds 3 and 4, and compound 1 was also
the compound detected most frequently from these areas. How-
ever, lobsters from these regions were collected primarily in

2005 and 2008, years in which we also observed much higher
proportions of compound 1 in LIS. Lobsters fromwestern areas
(LIS) had higher concentrations of compound 3 compared with

Figure 3. Regional variation in the composition of the total alkylphenol

contaminant load, shown separately for each year. Lobsters without any

detectable contaminant were excluded, and region3 year combinations

with fewer than 3 lobsters were excluded, for a total sample size of 208

lobsters. Regions are arranged from west to east, and error bars are SEs.

TABLE 3.

Change in alkylphenol contamination levels in the hemolymph
of initially contaminated lobsters held in the laboratory

for 7, 20, or 40 days.

Initial Hemolymph

(ng/mL)

No. of Days

Final Hemolymph

(ng/mL)

C1 C3 C4 C1 C3 C4

0 15 51 7 0 0 0

0 1 0 20 0 6 0

3 1 0 0 1 0

5 1 1 0 0 0

5 1 1 0 0 0

0 772 554 0 0 0

312 562 529 0 0 0

338 651 630 0 0 0

0 1 0 40 0 1 0

0 3 0 0 0 0

2 2 1 0 3 0

0 6 0 0 0 0

3 13 1 0 0 0

0 13 89 0 0 0

320 646 679 224 578 333

C1, C3, and C4 denote compounds 1, 3, and 4, respectively.
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compounds 1 and 4 in all years except 2005 and 2008, and
compound 3 was the most frequently detected compound from

these areas. Within LIS, compound 3 also displayed signifi-
cantly higher overall contamination levels in western regions.
Contamination levels observed for compounds 1 and 3 were not
significantly correlated overall, but the relative proportions of

these compounds did vary significantly with both year and
region. Taken together, these data provide evidence of spatial
variation in total alkylphenol contamination and contamination

by individual compounds over intermediate scales, although
additional sampling of eastern and western regions in the same
year are required to determinewhether these patterns hold outside

of LIS.However, the sources of alkylphenolic pollutants inmarine
habitats may vary over broad geographical scales, and it is rea-
sonable to hypothesize that the LIS basinmay present a barrier to
movement of environmental contaminants between the Sound

and other regions.
Our collecting trip data show that contamination is ex-

tremely variable; the prevalence of alkylphenols in hemolymph

was often dramatically different between collecting trips con-
ducted in the same location and the same year (e.g., 0% vs.
100% for the two 2008 trips in LIS East; see Fig. 2). We did not

detect any monthly pattern in prevalence or level of alkylphenol
contamination (data not shown), although our sampling was
not designed to test for this effect, and we cannot eliminate the

possibility that monthly patterns are masked by spatial and
annual variation in our data set.

Alkylphenol contamination in lobster hemolymph disap-
peared or (in all but 2 cases) decreased when lobsters were held

in the laboratory for 20–40 days. We also found no correlation
between alkylphenol contamination and lobster size (this study)
or sex (Jacobs et al. 2009), despite the fact that large lobsters

molt less often than small lobsters, and female lobsters molt less
often than males. Taken together, these results suggest that
alkylphenols do not persist in lobster hemolymph during inter-

molt. Lobsters may be able to clear contaminants by excreting
them through the gills or other excretory organs, or sequestering
them in tissues such as the hepatopancreas, epidermis, gonads,
or even the cuticle during molting, although these potential

pathways for the metabolism and excretion of alkylphenols
remain untested. Consistent with this hypothesis, Laufer et al.
(2005) observed female lobsters with uncontaminated hemo-

lymph carrying contaminated embryos. Egg-bearing female
lobsters do not molt, so assuming the alkylphenols passed to the
ovaries from the hemolymph, this observation suggests that the

lobsters were able to clear the contaminants from their hemo-
lymph (but not their eggs) during intermolt.

We were surprised to find that the prevalence and level of

alkylphenol contamination in the hemolymph of lobsters from
offshore canyons equaled or exceeded contamination levels for
inshore lobsters. If alkylphenols are transported passively off-
shore in sediments, then wewould expect sites hundreds ofmiles

offshore to have lower contamination levels in sediment, as has
been shown for other environmental contaminants (Rees et al.
1999, Boonyatumanond et al. 2006, Zoller 2006, Rato et al.

2008). Many offshore marine organisms are known to accumu-
late environmental contaminants, and thus carry contamina-
tion loads that are surprisingly high relative to ambient levels

(e.g., Scott et al. 2007, Rato et al. 2008). Lobsters may be ex-
posed to alkylphenols directly through sediment or water, or
through prey items with elevated levels of contaminants.

We were also surprised to find no correlation between the
prevalence or severity of alkylphenol contamination and shell

disease signs (Jacobs et al. 2009), despite the fact that contami-
nated lobsters have weaker cuticles (Laufer et al. 2012b). How-
ever, shell disease takes some time to develop (Smolowitz et al.
2005), and we have shown that alkylphenols in hemolymph

disappear relatively quickly. If weaker cuticles increase vulnera-
bility to shell disease, then we would expect the alkylphenol
content of cuticle to be correlated with shell disease status. It

would, however, be technically difficult to test this because such
an assay would require breaking apart the cross-linked proteins
of the fully hardened cuticle.

Our data set shows that alkylphenol contamination is a
persistent, widespread, but environmentally heterogeneous prob-
lem in lobster populations in southernNewEngland and adjacent
offshore areas. Lobsters in this region are likely repeatedly

exposed to these endocrine-disrupting compounds throughout
the course of their lifetime. We do not understand all the ways
in which these compounds affect the biology of lobsters, but

have good reason for concern: Exposure to very low levels of
alkylphenols disrupted metamorphosis significantly and was
severely toxic for larval lobsters (Laufer et al. 2012a), and

weakened cuticles of adult lobsters (Laufer et al. 2012b). Earlier
work on other crustaceans (Forward & Costlow 1976, Costlow
1977, Borst et al. 1987, Abdu et al. 1998) and mosquitoes

(Sacher 1971) also suggests that alkylphenols may disrupt
behavior, metamorphosis, and cuticle hardening of lobsters and
related organisms.

We hypothesize that alkylphenol contamination levels in

lobster hemolymph represent recent exposure, through sedi-
ment or food. Our data suggest that lobsters do not retain
alkylphenols in their hemolymph, but unless lobsters are different

frommost othermarine organisms examined, accumulation likely
does occur in other tissues, including the edible portions such as
the tail muscle and hepatopancreas. Additional work is urgently

required to assess the sources and environmental distribution of
these and other endocrine-disrupting compounds, and to un-
derstand their biological consequences for lobsters and other
organisms. It will be particularly important to assess the risk to

human health from these and similar contaminants in commer-
cially harvested lobsters.
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