81 research outputs found

    Clinical presentation and magnetic resonance imaging findings in 11 dogs with eosinophilic meningoencephalitis of unknown aetiology

    Get PDF
    Eleven dogs were included with a median age of 22·0 months (range 7·6 to 92·0 months). Nine breeds were represented. Neurological abnormalities included obtundation (n=10), menace response deficits (n=9), proprioceptive deficits (n=7), ataxia (n=7) and seizures (n=2). Neuroanatomical localisation was multi‐focal (n=4), central vestibular system (n=4), diffuse forebrain (n=2) or left trigeminal/facial nerves (n=1). Seven dogs had peripheral eosinophilia. Ten dogs had bilateral symmetrical lesions affecting the cortical grey matter, which was hyperintense on T2‐weighted and fluid‐attenuating inversion recovery images and iso‐ to hypointense on T1‐weighted images with associated meningeal contrast enhancement. MRI findings were consistent with diffuse meningitis and atrophy or necrosis of cortical grey matter. One dog had increased contrast uptake in the left trigeminal nerve. Ten dogs receiving corticosteroids survived to discharge, with seven also receiving cytarabine arabinoside. Median survival time was 762 days

    Small-volume potentiometric titrations: EPR investigations of Fe-S cluster N2 in mitochondrial complex

    Get PDF
    EPR-based potentiometric titrations are a well-established method for determining the reduction potentials of cofactors in large and complex proteins with at least one EPR-active state. However, such titrations require large amounts of protein. Here, we report a new method that requires an order of magnitude less protein than previously described methods, and that provides EPR samples suitable for measurements at both X- and Q-band microwave frequencies. We demonstrate our method by determining the reduction potential of the terminal [4Fe-4S] cluster (N2) in the intramolecular electron-transfer relay in mammalian respiratory complex I. The value determined by our method, Em7 = − 158 mV, is precise, reproducible, and consistent with previously reported values. Our small-volume potentiometric titration method will facilitate detailed investigations of EPR-active centres in non-abundant and refractory proteins that can only be prepared in small quantities

    Fruit flies : disinfestation, techniques used, possible application to mango

    Full text link
    Introduction. The methods of fruit disinfestation against fruit flies use processes (physical methods) which differ according to the export country and fruit which must be disinfested. The term definitions are made clear and the various treatments are presented. Heat treatments. For mango, treatments usable for disinfestation can only utilize heat, because of the strong sensitivity of this fruit to cold temperatures. The heat treatments in general consist of using an immersion in hot water by a system of batches or an uninterrupted bath. These treatments are then followed or not by a fruit fast cooling which can be carried out by ventilation (cold air) or hydrocooling (water). Heat can also be obtained by use of forced hot air or hot vapor, because a higher temperature than 45 °C kills fly eggs and larvae. Microwave treatments. The use of microwaves is also a technique which makes it possible to increase the temperature in the fruit heart. Irradiation. The last possible solution is the use of irradiation, which uses a principle different from the preceding treatments. Conclusion. In comparison with the most current treatments (vapor heat treatment and forced hot-air treatment), the hot water treatment has many advantages: it is easy to implement, it is quick, it kills surface parasitic organisms, it makes it possible to clean the fruit surface and its cost only corresponds to approximately 10%of the cost of one vapor heat treatment. It would thus be recommended for mango disinfestation

    Prognostic Factors for Recovery of Vision in Canine Optic Neuritis of Unknown Etiology: 26 Dogs (2003–2018)

    Get PDF
    Optic neuritis (ON) is a recognized condition, yet factors influencing recovery of vision are currently unknown. The purpose of this study was to identify prognostic factors for recovery of vision in canine ON of unknown etiology. Clinical databases of three referral hospitals were searched for dogs with presumptive ON based on clinicopathologic, MRI/CT, and fundoscopic findings. Twenty-six dogs diagnosed with presumptive ON of unknown etiology, isolated (I-ON) and MUE-associated (MUE-ON), were included in the study. Their medical records were reviewed retrospectively, and the association of complete recovery of vision with signalment, clinicopathologic findings, and treatment was investigated. Datasets were tested for normality using the D'Agostino and Shapiro-Wilk tests. Individual datasets were compared using the Chi-squared test, Fisher's exact test, and the Mann-Whitney U-test. For multiple comparisons with parametric datasets, the one-way analysis of variance (ANOVA) was performed, and for non-parametric datasets, the Kruskal-Wallis test was performed to test for independence. For all data, averages are expressed as median with interquartile range and significance set at p < 0.05. Twenty-six dogs met the inclusion criteria. Median follow-up was 230 days (range 21–1901 days, mean 496 days). Six dogs (23%) achieved complete recovery and 20 dogs (77%) incomplete or no recovery of vision. The presence of a reactive pupillary light reflex (p = 0.013), the absence of fundoscopic lesions (p = 0.0006), a younger age (p = 0.038), and a lower cerebrospinal fluid (CSF) total nucleated cell count (TNCC) (p = 0.022) were statistically associated with complete recovery of vision. Dogs with I-ON were significantly younger (p = 0.046) and had lower CSF TNCC (p = 0.030) compared to the MUE-ON group. This study identified prognostic factors that may influence complete recovery of vision in dogs with ON. A larger cohort of dogs is required to determine whether these findings are robust and whether additional parameters aid accurate prognosis for recovery of vision in canine ON
    corecore