54 research outputs found

    Nighttime mesospheric ozone enhancements during the 2002 southern hemispheric major stratospheric warming

    Get PDF
    Sudden Stratospheric Warmings (SSW) affect the chemistry and dynamics of the middle atmosphere. Major warmings occur roughly every second winter in the Northern Hemisphere (NH), but has only been observed once in the Southern Hemisphere (SH), during the Antarctic winter of 2002. Observations by the Global Ozone Monitoring by Occultation of Stars (GOMOS, an instrument on board Envisat) during this rare event, show a 40% increase of ozone in the nighttime secondary ozone layer at subpolar latitudes compared to non-SSW years. This study investigates the cause of the mesospheric nighttime ozone increase, using the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model with specified dynamics (SD-WACCM). The 2002 SH winter was characterized by several reductions of the strength of the polar night jet in the upper stratosphere before the jet reversed completely, marking the onset of the major SSW. At the time of these wind reductions, corresponding episodic increases can be seen in the modelled nighttime secondary ozone layer. This ozone increase is attributed largely to enhanced upwelling and the associated cooling of the altitude region in conjunction with the wind reversal. This is in correspondence to similar studies of SSW induced ozone enhancements in NH. But unlike its NH counterpart, the SH secondary ozone layer appeared to be impacted less by episodic variations in atomic hydrogen. Seasonally decreasing atomic hydrogen plays however a larger role in SH compared to NH

    The Direct Effect of Medium Energy Electron Precipitation on Mesospheric Dynamics During a Sudden Stratospheric Warming Event in 2010

    Get PDF
    Medium energy electron (MEE) (30–1,000 keV) precipitation enhances the production of nitric (NOx) and hydrogen oxides (HOx) throughout the mesosphere, which can destroy ozone (O3) in catalytic reactions. The dynamical effect of the direct mesospheric O3 reduction has long been an outstanding question, partly due to the concurrent feedback from the stratospheric O3 reduction. To overcome this challenge, the Whole Atmosphere Community Climate Model version 6 is applied in the specified dynamics mode for the year 2010, with and without MEE ionization rates. The results demonstrate that MEE ionization rates can modulate temperature, zonal wind and the residual circulation affecting NOx transport. The required fluxes of MEE to impose dynamical changes depend on the dynamical preconditions. During the Northern Hemispheric winter, even weak ionization rates can modulate the mesospheric signal of a sudden stratospheric warming event. The result provides a first step in a paradigm shift for the understanding of the MEE direct effect.publishedVersio

    Determining Latitudinal Extent of Energetic Electron Precipitation Using MEPED On-Board NOAA/POES

    Get PDF
    Energetic Electron Precipitation (EEP) from the plasma sheet and the radiation belts ionizes the polar lower thermosphere and mesosphere. EEP increases the production of NOx and HOx, which will catalytically destroy ozone, an important element of atmospheric dynamics. Therefore, measurement of the latitudinal extent of the precipitation boundaries is important in quantifying the atmospheric effects of the Sun-Earth interaction. This study uses measurements by the Medium Energy Proton Electron Detector (MEPED) of six NOAA/POES and EUMETSAT/METOP satellites from 2004 to 2014 to determine the latitudinal boundaries of EEP and their variability with geomagnetic activity and solar wind drivers. Variation of the boundaries for different electron energies and Magnetic Local Time (MLT) is studied. Regression analyses are applied to determine the best predictor variable based on solar wind parameters and geomagnetic indices. The highest correlation was found for the pressure-corrected Dst index when applying a linear regression model. A model of the equatorward EEP boundary is developed separately for three different energy channels, >43, >114, and >292 keV, and for 3 hour MLT sectors. For >43 keV EEP, 80% of the equatorward boundaries predicted by the model are within ±2.2° cgmlat. The model exhibits a solar cycle bias where it systematically exaggerates the equatorward movement of the EEP region during solar minimum. The highest accuracy of the model is found in periods dominated by corotating interaction regions/high speed solar wind streams. The result will be a key element for constructing a model of EEP variability to be applied in atmosphere climate models.publishedVersio

    Direct and indirect electron precipitation effect on nitric oxide in the polar middle atmosphere, using a full-range energy spectrum

    Get PDF
    Under embargo until: 2018-02-03In April 2010, a coronal mass ejection and a corotating interaction region on the Sun resulted in an energetic electron precipitation event in the Earth’s atmosphere. We investigate direct and indirect nitric oxide (NO) response to the electron precipitation. By combining electron fluxes from the Total Energy Detector and the Medium Energy Proton and Electron Detector on the National Oceanic and Atmospheric Administration’s Polar-orbiting Operational Environmental Satellites, we obtain a continuous energy spectrum covering 1–750 keV. This corresponds to electrons depositing their energy at atmospheric altitudes 60–120 km. Based on the electron energy deposition, taking into account loss due to photolysis, the accumulated NO number density is estimated. When compared to NO measured at these altitudes by the Solar Occultation for Ice Experiment instrument on board the Aeronomy of Ice in the Mesosphere satellite, the NO direct effect was detected down to 55 km. The main variability at these altitudes is, however, dominated by the indirect effect, which is downward transported NO. We estimate the source of this descending NO to be in the upper mesosphere at ∼75–90 km.publishedVersio

    The high-energy tail of energetic electron precipitation: solar wind drivers and geomagnetic responses

    Get PDF
    Compositional NOx changes caused by energetic electron precipitation (EEP) at a specific altitude and those co-dependent on vertical transport are referred to as the EEP direct and indirect effect, respectively. The direct effect of EEP at lower mesospheric and upper stratospheric altitudes is linked to the high-energy tail of EEP (≳ 300 keV). The relative importance of this direct effect on NOx, ozone, and atmospheric dynamics remains unresolved due to inadequate particle measurements and scarcity of polar mesospheric NOx observations. An accurate parameterization of the high-energy tail of EEP is, therefore, crucial. This study utilizes EEP flux data from MEPED aboard the POES/Metop satellites from 2004–2014. Data from both hemispheres (55–70° N/S) are combined in daily flux estimates. 164 peaks above the 90th percentile of the ≳ 30 keV flux are identified. These peaks are categorized into absolute E1 and E3 events representing weak and strong ≳ 300 keV responses, respectively. A subset of absolute E1 and E3 events with similar ≳ 30 keV responses is termed overlapping events. Additionally, relative E1 and E3 events are determined by the relative strength of the ≳ 300 keV response, scaled by the initial ≳ 30 keV flux. A comparison between E1 and E3 events aims to identify solar wind and geomagnetic conditions leading to high-energy EEP responses and to gain insight into the conditions that generate a high-energy tail, independent of the initial ≳ 30 keV flux level. Superposed epoch analysis of mesospheric NO density from SOFIE confirms an observable direct impact on lower mesospheric chemistry associated with the absolute E3 events. A probability assessment based on absolute events identifies specific thresholds in the solar wind-magnetosphere coupling function (epsilon) and the geomagnetic indices Kp*10 and Dst, capable of determining the occurrence or exclusion of absolute E1 and E3 events. Elevated solar wind speeds persisting in the recovery phase of a deep Dst trough appear characteristic of overlapping and relative E3 events. This study provides insight into which parameters are important for accurately modeling the high-energy tail of EEP

    Mesospheric nitric acid enhancements during energetic electron precipitation events simulated by WACCM‐D

    Get PDF
    While observed mesospheric polar nitric acid enhancements have been attributed to energetic particle precipitation through ion cluster chemistry in the past, this phenomenon is not reproduced in current whole-atmosphere chemistry-climate models. We investigate such nitric acid enhancements resulting from energetic electron precipitation events using a recently developed variant of the Whole Atmosphere Community Climate Model (WACCM) that includes a sophisticated ion chemistry tailored for the D-layer of the ionosphere (50-90 km), namely WACCM-D. Using the specified-dynamics mode, i.e., nudging dynamics in the troposphere and stratosphere to meteorological re-analyses, we perform a one-year long simulation (July 2009-June 2010) and contrast WACCM-D with the standard WACCM. Both WACCM and WACCM-D simulations are performed with and without forcing from medium-to-high energy electron precipitation, allowing a better representation of the energetic electrons penetrating into the mesosphere. We demonstrate the effects of the strong particle precipitation events which occurred during April and May 2010 on nitric acid and on key ion cluster species, as well as other relevant species of the nitrogen family. The one-year-long simulation allows the event-related changes in neutral and ionic species to be placed in the context of their annual cycle. We especially highlight the role played by medium-to-high energy electrons in triggering ion cluster chemistry and ion-ion recombinations in the mesosphere and lower thermosphere during the precipitation event, leading to enhanced production of nitric acid and raising its abundance by two orders of magnitude from 10-4 to a few 10-2 ppb

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    The genetic determinants of recurrent somatic mutations in 43,693 blood genomes

    Get PDF
    Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value OBFC1indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes
    corecore