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SUMMARY

Genetic studies on telomere length are important for understanding age-related diseases. Prior GWASs for
leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-
based association study for TL across ancestrally diverse individuals (European, African, Asian, and Hispan-
ic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole-genome
sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere
length in n = 109,122 individuals. We identified 59 sentinel variants (p < 5 3 10�9) in 36 loci associated with
telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little
evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated that the inde-
pendent signals colocalized with cell-type-specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-
based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and
PARN. In PheWAS, we demonstrated that our TL polygenic trait scores (PTSs) were associated with an
increased risk of cancer-related phenotypes.

INTRODUCTION

Telomeres shorten in replicating somatic cells, and telomere

length (TL) is associated with age-related diseases.1,2 To date,

17 genome-wide association studies (GWASs) have identified

25 loci for leukocyte TL,3–19 but these studies were limited to in-

dividuals of European and Asian ancestry and relied on labora-

tory assays of TL. The decreasing costs of high-throughput

sequencing have enabled whole-genome sequencing (WGS)

data generation on an unprecedented scale, including in the
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National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics

for Precision Medicine (TOPMed) cohorts. Our analyses of

TOPMed data offer the opportunity to address the limitations

of prior TL GWASs with increased sample size, population diver-

sity, and inclusion of rare variant analyses and fine-mapping of

the OBFC1 locus.

In this study, we report a sequencing-based association anal-

ysis for telomere length in 109,122 ancestrally diverse individuals

(European, African, Asian, and Hispanic/Latino) from the

TOPMed program. We used WGS of whole blood for variant ge-

notype calling. We used the TelSeq method for the bioinformatic

estimation of telomere length from the WGS data and demon-

strated that this approach has high phenotypic and genetic

correlation with laboratory-based assays, providing a reliable

measurement of TL. We identified 59 sentinel variants (p < 5 3

10�9) in 36 loci associated with TL; 20 of these are newly asso-

ciated, and 13 replicated in external datasets. We also identified

new common and rare variant associations at previously re-

ported TL loci. Using WGS data also allowed fine-mapping

approaches for OBFC1. Finally, we conducted phenome-wide

association studies (PheWAS) in BioVU and identified the asso-

ciation of our defined polygenic trait scores (PTSs) for TL with the

increased risk of cancer-related phenotypes.

RESULTS

We selected TelSeq20 to bioinformatically estimate TL due to its

computational efficiency and high correlation with Southern

blot21 and flowFISH22 measurements (Figures S1A–S1C; STAR

Methods). We developed a principal components-based

approach to remove technical artifacts arising from the

sequencing process that affected TL estimation, which further

improved accuracy (Figures S1D and S1E; STAR Methods).

We found high phenotypic correlation of TelSeq-derived TL

with TL measured by Southern blot21 in the 2,398 TOPMed sam-

ples from the Jackson Heart Study (JHS) and with TL measured

by flowFISH22 in a set of 19 TOPMed GeneSTAR samples (r =

0.68 and 0.80, respectively; Figures S1C–S1E; STAR Methods).

In addition, we observed high genetic correlation between Tel-

Seq and Southern blot assays of TL in the subset of 1,083 fam-

ily-based JHS samples (rg = 0.8069, SE = 0.05, estimated using

SOLAR23). Together, the phenotypic and genetic correlations

with the more traditionally used Southern blot or flowFISH as-

says suggest the suitability of TelSeq-based TL as a potential

TL measure for large-scale genetic epidemiologic study.

Pooled trans-population association analysis was performed

with n = 109,122 individuals from TOPMed (including 51,654 of

European ancestry, 29,260 of African ancestry, 18,019 Hispan-

ic/Latinos, 5,683 of Asian ancestry, and 4,506 of other, mixed,

or uncertain ancestries, as determined by harmonized ancestry

and race/ethnicity [HARE]24;Figure 1A; STAR Methods); 44%

were male and ages ranged from <1 to 98 years old (Table S1).

Genome-wide tests for association were performed across 163

million variants. Using a series of single-variant tests for associ-

ation (primary to identify loci, iterative conditional by chromo-

some to identify additional independent variants, and joint tests,

including all independent variants to summarize effect sizes; see

STAR Methods), we identified 59 independently associated var-

iants mapping to 36 loci, meeting the significance threshold of

p < 53 10�9 (Figure 1B; Tables 1 and S2); 16 of these were pre-

viously reported and 20 were newly associated loci, as

described further below.

We examined 25 previously reported loci for TL identified

through GWASs, using qPCR or Southern blot assays to directly

measure TL, for evidence of replication in our study. For 16 loci

(PARP1, ACYP2, TERC, NAF1, TERT, POT1, TERF1, OBFC1,

ATM, TINF2, DCAF4, TERF2, RFWD3, MPHOSPH6, ZNF208/

ZNF257/ZNF676, and RTEL1), there was at least 1 variant with

p <5 3 10�9 in our trans-population TL analysis that was in link-

age disequilibrium (LD) (r2 R 0.7) with a published genome-wide

significant (p <5 3 10�8) variant from a previous study (Tables 1

and S3). Directionally consistent and nominal evidence for repli-

cation was noted for CTC1 (rs3027234, p = 7.97 3 10�5) and

SENP7 (rs55749605, p = 0.023). A signal previously attributed
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to PRRC2A is located <200 kb from our signal for HSPA1A but

may be distinct given the low LD (r2 = 0.26). We found no evi-

dence of replication (all variants with p > 0.05) for the remaining

previously reported TL loci (CXCR4, PXK, MOB1B, DKK2/

PAPSS1, CARMIL1, and CSNK2A2; Table S3). Our comprehen-

sive conditional analyses identified R1 independent sentinel

variants at 9 of the 16 previously reported loci (Figure 2A; Table

1). The resolution possible with our trans-population WGS data

identified a sentinel variant different from the one previously re-

ported by tagging-based GWASs for 11 of the 16 known loci.

At known loci RTEL1, RFWD3, POT1, ACYP2, and PARP1, our

WGS-based sentinels included a coding missense variant in

genes RTEL1, RFWD3, POT1, TSPYL6, and PARP1, respec-

tively. For the remaining known TL loci, many of the non-coding

sentinel variants are annotated as having regulatory evidence

(RegulomeDB score < 7; Table 1), as illustrated further for

OBFC1 below.

A total of 22 independent sentinel variants were located at the

20 newly associated loci (Table 1). We examined 19 of these

sentinel variants for evidence of association in 2 previously

qPCR-based TL GWASs with non-overlapping subjects18,19

(Figure S2A). Variants at 10 of these loci (BCL2L15, CXXC5,

HSPA1A, NOC3L, NKX2-3, ATP8B4, CLEC18C, TYMS,

SAMHD1, and TYMP) had a Bonferroni-corrected p < 0.05/

19 = 0.0026, and an additional 3 had variants with p < 0.05

(TNP03, KBTBD7, and BANP), as did a second variant at

TYMS. The variant at SAMHD1 was previously reported at an

false discovery rate (FDR) < 0.05 (p = 1.41 3 10�7),19 but here

has genome-wide significance (p = 1.58 3 10�19). Proteins en-

coded by two of these genes have strong biological connections

to TL: CXXC5, which physically interacts with ATMand transcrip-

tionally regulates p53 levels25; two proteins implicated in telo-

mere length regulation; and BANP (also known as SMAR1),

which forms a complex with p53 and functions as a tumor

suppressor.26

There is high consistency in the effect sizes at the 59 sentinel

variants observed in our TelSeq-based TL GWAS compared to

prior GWASs using qPCR assays of TL (Figure S2B). The Pear-

son correlation was 0.92 (p = 2.1 3 10�15, for 37 overlapping

variants) for our study compared to Dorajoo et al.18 (n = 23,096

Singaporean Chinese; Figure S2B, upper panel) and was 0.86

(p = 1.2 3 10�13, for 43 overlapping variants) for our study

compared to Li et al.19 (n = 78,592 European; Figure S2B, lower

panel). However, qPCR is a relative measure of TL (relative to a

single copy gene, see Note S1); it has different units from our

TelSeq measurement, which is in base pairs. A direct compari-

son between effect sizes in base pairs from Southern blot and

TelSeq in the 2,398 JHS samples (STAR Methods) confirms

B A

Figure 1. Genome-wide Manhattan plot

(A) Pie chart showing population groups based on HARE for samples included in analysis: European (green, n = 51,654), African (orange, n = 29,260), Hispanic/

Latino (purple, n = 18,019), Asian (red, n = 5,683), and Other/Mixed/Unknown (gray, n = 4,506).

(B) Trans-population genome-wide tests for association using 163 million sequence-identified variants on n = 109,122 samples with sequence-generated

telomere length from TOPMed. All loci had a peak p < 53 10�9 in the pooled trans-population analysis. Previously reported loci for TL are indicated in red, and loci

newly associated in the present study are indicated in blue. Note the shift in scale above the y axis break; no peak variants had a p value within the y axis break.
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Table 1. 59 variants independently associatedwith telomere length,mapping to 36 loci, in 109,122 ancestrally diverse (African, European, Hispanic/Latino, Asian) individuals

from TOPMed

Single variant

analysis in

pooled trans-

population

sample

p values

from joint

model

Effect sizes

from joint

model Coc

hran’s

Q (p

value)Chr Locus SNP

Prior

GWAS

Anno

tation MAC

p

value

Percent

variation

explained

Trans-

popu

lation

Euro

pean African

His

panic/

Latino Asian

Trans-

popu

lation

Euro

pean

Afri

can

His

panic/

Latino Asian

1 ZMYM4 rs11581846 7 87500 3.04E�10 0.036% 1.74E�11 7.99E�5 8.80E�3 3.37E�6 4.13E�1 �19.9 �21.1 �15.0 �24.6 �8.7 0.44

1 BCL

2L15

rs2296176 7 33274 2.84E�10 0.036% 1.52E�10 6.57E�8 2.38E�3 3.16E�1 2.07E�2 �19.5 �22.4 �22.0 �7.3 �26.9 0.28

1 PARP1 rs1136410 Known mis

sense

36395 9.32E�20 0.076% 9.14E�22 6.10E�9 1.02E�2 7.51E�7 2.04E�4 �29.3 �26.0 �23.7 �29.5 �32.5 0.87

2 ACYP2 rs17189743 Known mis

sense

3741 7.18E�12 0.043% 4.24E�11 2.70E�6 2.52E�1 5.20E�6 1.94E�1 �55.4 �50.7 �30.4 �82.4 �46.8 0.34

2 rs144980386 dele

tion

28773 1.32E�17 0.067% 1.99E�17 7.78E�13 7.32E�4 1.45E�4 6.78E�1 27.5 33.6 21.2 30.5 4.8 0.08

3 LINC

00901

rs961617801 6 12 1.25E�11 0.042% 4.81E�11 2.82E�10 – – – 1009.6 1038.5 – – – –

3 TERC rs12637184 Known 4 47452 1.30E�96 0.399% 1.58E�103 1.02E�50 1.84E�15 7.32E�30 2.33E�11 �59.8 �57.0 �65.8 �66.1 �57.3 0.51

3 rs9826466 N/A 4066 3.25E�17 0.065% 3.66E�21 2.04E�01 7.28E�19 2.96E�03 – �77.0 253.9 �77.6 �77.8 – 0.25

3 P3H2 rs10937417 7 80209 6.89E�10 0.035% 1.89E�10 9.04E�5 1.65E�5 2.33E�3 6.30E�1 14.6 13.5 17.9 17.1 �4.4 0.16

4 SLC

2A2

rs4235345 6 44302 3.82E�9 0.032% 1.88E�9 3.24E�7 4.39E�2 1.86E�2 5.70E�2 16.8 19.8 12.8 13.2 47.1 0.41

4 NAF1 rs60735607* Known 6 57418 0.003964 0.008% 4.43E�12 4.45E�7 7.20E�3 5.33E�4 9.94E�1 �18.5 �20.0 �12.9 �22.4 �0.1 0.43

4 rs113580095 7 290 4.72E�18 0.069% 1.63E�16 2.57E�8 7.12E�2 3.40E�7 – �254.7 �231.9 �287.8 �257.9 – 0.89

4 rs1351222 7 50104 3.27E�26 0.103% 1.60E�32 9.04E�16 1.50E�7 6.80E�11 6.58E�3 32.7 32.7 28.9 41.2 28.9 0.49

5 TERT rs192999400 Known 5 2470 3.10E�15 0.057% 8.21E�23 2.15E�1 3.90E�17 3.42E�3 6.19E�2 101.3 88.7 97.4 96.9 108.4 1.00

5 rs6897196 5 102081 1.87E�83 0.344% 6.04E�13 7.24E�4 7.90E�8 1.87E�2 1.46E�1 20.8 16.2 25.2 16.8 23.4 0.55

5 rs7705526** 7 64162 1.64E�92 0.382% 2.01E�18 1.16E�11 7.73E�4 1.46E�3 6.47E�2 30.0 35.5 22.5 27.1 34.1 0.47

5 rs2853677** 5 80905 8.17E�65 0.265% 1.25E�19 9.27E�7 8.88E�10 1.33E�5 8.34E�2 �23.9 �17.7 �33.9 �28.9 �22.0 0.08

5 rs34052286 3a 6173 1.50E�12 0.046% 5.47E�22 3.86E�1 1.09E�14 2.39E�5 – �66.0 �59.3 �61.6 �74.3 – 0.80

5 rs114616103* 7 4527 2.39E�7 0.024% 2.03E�13 1.44E�9 2.09E�2 1.72E�2 4.93E�1 �57.2 �59.2 �37.9 �57.6 �71.9 0.73

5 CXXC5 rs75903170 2b 11895 5.69E�10 0.035% 7.01E�10 2.83E�4 2.58E�6 8.14E�2 4.31E�1 29.6 25.5 46.7 22.3 12.6 0.19

6 HSP

A1A

rs1008438 2b 106908 3.42E�17 0.065% 6.64E�19 3.61E�9 1.40E�4 4.10E�7 1.71E�2 �20.3 �19.7 �18.4 �25.7 �20.5 0.73

(Continued on next page)
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Table 1. Continued

Single variant

analysis in

pooled trans-

population

sample

p values

from joint

model

Effect sizes

from joint

model Coc

hran’s

Q (p

value)Chr Locus SNP

Prior

GWAS

Anno

tation MAC

p

value

Percent

variation

explained

Trans-

popu

lation

Euro

pean African

His

panic/

Latino Asian

Trans-

popu

lation

Euro

pean

Afri

can

His

panic/

Latino Asian

7 POT1 rs720613 Known 7 62325 1.27E�26 0.105% 1.37E�27 2.59E�18 5.87E�6 3.63E�5 2.51E�2 �26.3 �31.3 �20.4 �24.6 �21.0 0.26

7 rs202187871 mis

sense

27 4.89E�12 0.044% 6.72E�13 6.42E�12 – – – 738.3 719.6 – – – –

7 TNP03 rs7783384 5 92528 2.34E�12 0.045% 6.10E�12 1.22E�7 1.47E�3 2.54E�2 2.04E�2 �15.2 �17.8 �13.3 �11.4 �19.8 0.64

8 TERF1 rs183633026 Known 7 1132 1.59E�10 0.038% 1.45E�10 3.48E�2 7.67E�1 1.51E�9 – 99.4 75.4 �22.0 109.6 – 0.18

8 rs73687065 5 1676 3.10E�12 0.045% 8.10E�12 7.74E�1 2.76E�10 5.71E�3 – 85.3 24.9 87.4 97.0 – 0.74

8 rs10112752 7 78968 4.59E�13 0.048% 9.83E�12 5.13E�9 5.69E�3 4.16E�2 2.83E�2 �15.8 �19.2 �12.6 �11.2 �26.2 0.40

10 NOC3L rs3758526 mis

sense

32511 6.80E�12 0.043% 5.77E�13 1.63E�5 2.70E�5 1.38E�2 1.42E�2 �22.0 �21.1 �22.6 �19.8 �23.1 0.99

10 NKX2-3 rs10883359 7 54905 3.60E�12 0.044% 9.34E�11 5.46E�5 5.14E�6 3.46E�2 1.70E�1 �16.5 �14.5 �28.1 �11.9 �11.9 0.19

10 OBFC1 rs10883948 Known 7 94489 2.04E�34 0.137% 3.97E�12 1.20E�5 3.99E�4 2.18E�2 6.42E�4 �18.8 �15.7 �24.2 �13.9 �46.8 0.11

10 rs112163720* 4 15559 0.440005 0.001% 4.86E�16 9.57E�7 4.34E�7 3.69E�4 9.38E�4 37.1 48.1 39.1 35.3 54.9 0.66

10 rs9420907** 3a 54838 3.90E�83 0.342% 6.80E�54 3.65E�18 6.94E�19 6.79E�13 9.41E�1 �49.2 �44.3 �52.4 �53.8 �2.4 0.30

10 rs111447985 2a 2391 2.29E�24 0.095% 3.03E�35 4.94E�3 2.24E�2 5.44E�22 2.81E�10 131.9 120.7 98.1 143.4 137.2 0.77

11 ATM rs61380955 Known 7 105969 2.47E�17 0.066% 1.11E�18 5.79E�14 2.97E�4 2.47E�3 9.19E�2 �19.6 �24.8 �15.6 �15.7 �14.6 0.24

13 KBTBD7 rs1411041 6 85572 6.29E�14 0.052% 6.65E�15 1.46E�8 6.04E�4 1.13E�3 1.77E�2 22.4 25.5 20.5 20.2 20.8 0.87

14 TINF2 rs28372734 Known 4 2648 1.74E�27 0.108% 1.27E�30 4.91E�2 3.42E�6 4.59E�9 7.26E�10 112.6 120.9 103.9 132.1 94.8 0.59

14 rs8016076 2b 1977 1.80E�11 0.041% 4.46E�13 1.01E�1 1.70E�10 6.73E�3 – 83.8 374.8 80.9 87.5 – 0.43

14 rs41293824 5 1543 1.31E�9 0.034% 1.87E�10 7.43E�1 1.83E�7 2.58E�4 – 83.1 40.9 76.5 125.7 – 0.40

14 DCAF4 rs2572 Known 5 20731 5.14E�12 0.044% 6.70E�14 2.00E�7 1.07E�4 3.42E�3 1.75E�3 28.0 27.7 36.5 25.5 33.8 0.80

15 ATP8B4 rs7172615 4 41027 4.31E�9 0.032% 3.53E�10 1.14E�7 3.77E�3 1.96E�1 1.90E�1 �17.8 �20.3 �21.4 �8.7 �12.0 0.41

16 TERF2 rs9925619 Known 7 66224 3.01E�14 0.053% 7.84E�15 3.03E�4 1.01E�7 1.02E�6 5.10E�1 18.6 13.1 22.5 27.9 8.9 0.10

16 CLEC18C rs62049363 7 61724 4.09E�10 0.036% 3.25E�11 5.24E�7 1.44E�1 4.80E�4 3.52E�1 �16.8 �16.7 �11.2 �19.4 �8.5 0.69

16 RFWD3 rs7193541 Known mis

sense

93079 1.47E�16 0.063% 3.18E�17 3.39E�12 5.63E�5 1.66E�3 5.21E�1 �18.7 �22.9 �16.8 �16.9 �5.6 0.24

16 MPHO

SPH6

rs2967355 Known 6 34993 3.96E�19 0.073% 2.04E�20 2.69E�11 1.58E�4 4.86E�7 9.91E�1 �28.2 �26.2 �33.8 �36.8 �0.1 0.05

16 BANP rs12934497 5 77109 9.15E�10 0.034% 8.16E�0 1.53E�5 1.62E�3 5.66E�3 1.15E�1 14.6 14.1 15.2 15.2 31.8 0.86

18 TYMS rs150119891* 5 1320 2.27E�7 0.025% 1.92E�11 3.69E�10 2.80E�1 2.89E�3 – �98.8 �104.9 �52.3 �160.9 – 0.32

18 rs8088781 5 25774 2.49E�15 0.057% 8.91E�32 2.78E�15 1.75E�8 8.74E�9 8.66E�2 �50.6 �56.0 �40.8 �59.3 �160.9 0.21

18 rs2612101* 5 56194 0.407696 0.001% 6.29E�16 7.76E�7 2.11E�4 5.13E�8 3.89E�2 26.0 29.4 18.4 35.1 171.4 0.05

(Continued on next page)
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Table 1. Continued

Single variant

analysis in

pooled trans-

population

sample

p values

from joint

model

Effect sizes

from joint

model Coc

hran’s

Q (p

value)Chr Locus SNP

Prior

GWAS

Anno

tation MAC

p

value

Percent

variation

explained

Trans-

popu

lation

Euro

pean African

His

panic/

Latino Asian

Trans-

popu

lation

Euro

pean

Afri

can

His

panic/

Latino Asian

18 SETBP1 rs2852770 7 46513 1.00E-11 0.042% 1.15E-12 2.32E-09 4.37E-02 1.23E-04 7.01E-01 �19.0 �25.1 �9.4 �24.3 �4.1 0.03

19 ZNF257/

ZNF676

rs8105767** Known 6 76591 3.59E�18 0.069% 1.52E�18 6.32E�9 1.14E�7 5.00E�3 5.14E�3 20.3 20.8 22.2 15.0 25.5 0.68

20 SAMHD1 rs2342113 6 51830 4.62E�18 0.069% 1.58E�19 2.50E�13 4.00E�4 1.34E�6 3.67E�1 �23.7 �33.8 �16.1 �27.4 �7.7 0.01

20 RTEL1 rs41308088 Known 5 14105 1.58E�10 0.038% 8.42E�16 6.46E�15 6.24E�2 4.61E�2 2.05E�1 37.1 45.3 25.1 20.1 58.1 0.12

20 rs79981941 6 21592 1.46E�23 0.092% 1.37E�12 5.06E�6 4.73E�3 5.48E�6 9.09E�2 �26.7 �26.4 �18.6 �39.1 �47.5 0.25

20 rs41309367** 5 71377 2.52E�33 0.133% 1.01E�42 5.92E�23 1.49E�15 9.58E�9 6.05E�1 �34.1 �37.0 �38.0 �33.0 �5.1 0.02

20 rs35640778 mis

sense

2354 2.31E�28 0.112% 1.47E�38 3.77E�29 2.06E�7 1.11E�4 9.25E�1 �140.5 �141.8 �176.3 �116.7 13.8 0.42

20 rs181080831 synon

ymous

675 6.40E�17 0.064% 7.53E�19 8.00E�18 8.50E�1 1.39E�2 – 180.5 199.5 15.5 133.0 – 0.07

22 TYMP rs361725 3a 101750 1.36E�10 0.038% 8.26E�12 3.97E�11 2.32E�1 4.11E�2 2.39E�2 �15.6 �22.1 �5.4 �10.6 �21.2 0.02

X VSIG4 rs12394264 4 50912 9.67E�16 0.059% 5.36E�17 1.57E�7 1.94E�5 4.13E�5 7.28E�1 19.0 19.2 15.7 20.6 13.3 0.85

X GAB3 rs2728723 5 63517 1.21E�12 0.046% 3.47E�12 4.45E�8 8.67E�2 7.96E�4 4.55E�2 13.2 15.7 6.0 14.4 17.0 0.17

Loci are labeled as known if the sentinel variants in the locus were in LD (r2 R 0.7) with previously reported GWAS association for telomere length. There are 5 variants marked with an asterisk

where the primary analysis did not meet our threshold of p < 53 10�9; however, they reached significance after conditioning on significant variants mapping to the chromosome (detailed in Table

S2). Variants marked with a double asterisk are direct matches to prior reported sentinel variants. Percentage of trait variation explained by each variant is provided from single-variant association

tests. p values and effect sizes (in base pairs) are reported from a joint model including all variants. p values for effect heterogeneity across population groups were generated using Cochran’s Q

statistic. MAC is the minor allele count from the full combined sample. For all exonic variants, detailed annotation is provided, while for all non-coding variants, the RegulomeDB score is given.

See also Tables S2 and S4.

8
C
e
llG

e
n
o
m
ic
s
2
,
1
0
0
0
8
4
,
J
a
n
u
a
ry

1
2
,
2
0
2
2

S
h
o
rt

a
rtic

le
ll

O
P
E
N

A
C
C
E
S
S



very high correlation (r = 0.92, p = 1.63 10�20 for 49 variants with

minor allele frequency (MAF) R1% in the JHS samples; Fig-

ure S2C). We note that the effect sizes in bp for TelSeq are

around half those for Southern blot (slope = 0.56, p = 1.6 3

10�20). This mirrors what we observe in a direct comparison of

the TelSeq and Southern blot TL values (Figure S1D): a 1 bp in-

crease in Southern blot TL corresponds to a 0.42 bp increase in

TelSeq TL (p = 4.93 10�319). Furthermore, the age effects on TL

in these JHS samples show a similar pattern: the estimated per

year decline in TL is 22 bp (p = 1.9 3 10�114) for Southern blot

compared to 11 bp (p = 1.83 10�69) for TelSeq (STARMethods).

As a further assessment of the general reliability of our TelSeq

measurements for large-scale genetic epidemiologic analysis,

we performed cross-trait LD score regression with LDSC27,28

A

B

C

Figure 2. LocusZoom plots for multi-hit loci and TINF2

(A) LocusZoom plots for all loci with >1 sentinel variant. Linkage disequilibrium (LD) was calculated from the set of samples used in the analysis with respect to the

peak variant in the pooled trans-population primary analysis, thereby reflecting LD patterns specific to the TOPMed samples. For each figure, the peak sentinel

variant from the pooled trans-population analysis is indexed and labeled in purple, and all of the independent variants identified through the iterative conditional

approach are labeled in green and highlighted with green dotted lines.

(B) LocusZoom plots for 4 population groups for the TINF2 locus.

(C) Forest plots displaying effect sizes and standard errors, as well as minor allele frequencies, by population group for the 3 sentinel variants in TINF2.

See also Table S2.
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using GWAS summary statistics from the European ancestry

group (n = 51,564) in our TOPMed WGS-based analysis and

the Li et al.19 analysis on n = 78,592 European ancestry individ-

uals with qPCR-measured TL. The genetic correlation was

0.8066 (SE = 0.09, p = 1.8 3 10�17), indicating a high degree

of shared genetic determinants of TL from the 2 different mea-

surement technologies.

Each of the 59 sentinel variants individually accounted for a

small percentage of phenotypic variation (Table 1), consistent

with prior GWASs of TL but cumulatively accounted for 4.35%

of TL variance, compared to 2%–3% from prior GWASs.3 The

37 variants mapping to 16 known loci explained 3.38% of TL

variability, and an additional 0.96%was explained by the 22 var-

iants mapping to our 20 newly associated loci, representing a

sizable gain in explained variability for TL from the present study.

Prior GWASs using Southern blot and qPCR report allelic effects

ranging from �49 to 120 bp.3,4,11,13 In the TOPMed data, our

estimated effect sizes for common variants (minor allele fre-

quency, MAF R 5%) ranged from 2 to 59 bp per allele. In com-

parison, the effect sizes were larger for rare and low-frequency

variants (MAF < 5%) in the TOPMed data (40–1,063 bp per

allele).

Stratified association analyses were performed in population

groupswith at least 5,000 samples to evaluate effect heterogene-

ity of the 59 sentinel variants (Table S4). Reduced sample sizes,

coupled with variation in allele frequency, often limited our power

to detect population-specific associations at GWAS thresholds in

the individual strata (Table S4); no additional loci were identified.

A major advantage of our analysis was the ability to rely on the in-

dividual-level WGS data for the iterative conditional approach to

identify the final set of independent sentinel variants at each lo-

cus. The identified sentinel variants show little evidence for het-

erogeneity across populations (Table 1). All Cochran’s Q29 p

values (Table 1) were above a Bonferroni correction threshold

(p > 0.001), and the 5 with nominal significance (0.001 < p <

0.05) appear to be primarily driven by differences in the (smallest)

Asian stratum. An interesting illustration of a locus with strong

allele frequency differences between groups is TINF2; the evi-

dence at the peak variant (rs28372734) in the trans-population

analysis was driven by the smaller Hispanic/Latino and Asian

groups (group-specific p 4.6 3 10�9 and 7.3 3 10�10, respec-

tively), and the secondary peak (rs8016076) was driven by the Af-

rican group (group-specific p 1.73 10�10; Figure 2B; Table 1). No

association is noted in the European group, where these variants

are nearly monomorphic (Figure 2C).

Gene-based tests in the combined sample of all 109,000 indi-

viduals identified 8 protein-coding genes with deleterious rare

and low-frequency (MAF < 1%, including singletons) variants

associated with TL (p < 1.8 3 10�6, see Figure S3; STAR

Methods). Six of these genes were previously identified GWAS

loci (POT1, TERT, RTEL1, CTC1, SAMHD1, and ATM), now add-

ing support for rare variant associations in these genes. Both

DCLRE1B and PARN have been implicated in short telomere

syndrome (STS) patients.30–32 DCLRE1B protein localizes to

the telomere via interaction with the protein of another previously

implicated GWAS gene, TERF2, and contributes to telomere

protection from DNA repair pathways.33,34 Notably, two PARN

loss-of-function variants included in our gene-based test were

previously identified in STS patients.30 Both rs878853260 and

rs876661305 produce frameshift mutations; rs876661305 pro-

duces an early termination codon, truncating most of the

nuclease domain.35 For each of these 8 genes, a leave-one-out

approach iterating over each variant included in the aggregate

test showed there were no detectable main driver variants and

indicated that these gene-based association signals arise from

cumulative signals across multiple rare deleterious variants (Fig-

ure S3), with the possible exception of ATM. When conditioned

on the 59 sentinel variants, all of the genes, except POT1, main-

tained or increased statistical significance (Figure S3). For POT1,

while the removal of the single variant identified in Table 1

(rs202187871) and conditioning on all 59 sentinels resulted in a

decrease in significance from 1.52 3 10�24 to 5.53 3 10�18, it

nonetheless remained strongly significant, meeting Bonferroni

thresholds.

The identification of multiple independent sentinel variants for

several loci offers the unique opportunity to evaluate the poten-

tial for distinct regulatory mechanisms (Figures 2A and S4).

OBFC1 is part of a complex that binds single-stranded telomeric

DNA36 and is expressed across multiple tissues in GTEx37 and in

whole-blood studies meta-analyzed in eQTLGen.38 All four sig-

nals at the OBFC1 locus are in the promoter and early introns

of OBFC1 (Figure 3A and 3B). Evidence for expression quantita-

tive trait loci (eQTL) colocalization was detected at the primary,

tertiary, and quaternary signals in various tissues (STAR

Methods). While all 3 signals colocalized with OBFC1 eQTLs,

the strongest colocalization evidence in each case was in a

distinct tissue: sun-exposed skin from the lower leg (posterior

probability of shared signal, PPH4 = 98.0%) for the primary, skel-

etal muscle (PPH4 = 84.4%) for the tertiary, and whole blood

(GTEx PPH4 = 75.5%, eQTLGen PPH4 = 75.5%) for the quater-

nary signal (Figures 3C–3E and S5E; Table S5). Data from the

Roadmap Epigenomics Consortium39 indicate that all 4 signals

are consistent with promoter or enhancer regions across blood

cells and skeletal muscle tissue (Figure 3B). We were unable to

perform colocalization analysis on the secondary signal with

data from either GTEx or eQTLGen as it is driven by rare variants

only in the Hispanic/Latino and Asian individuals (rs111447985;

Table S4).

Using individual-level data within the Vanderbilt University

biobank BioVU, we performed a PheWAS (Table S6) using 49

available sentinel variants individually in addition to a TL poly-

genic trait score (PTS). The PTS was generated separately for

European and African individuals in BioVU as a simple linear

combination of the effect sizes from the stratified joint analysis

in European or African individuals, respectively (Table 1, Effect

sizes from joint model). PTS values were significantly higher in

BioVU African Americans (AAs, mean = �217 bp, SD = 96 bp)

compared to European Americans (EAs, mean = �279 bp,

SD = 96 bp, p < 0.05, Welch’s 2-sample t test; Figure S6A), offer-

ing evidence that previously observed differences in TL by

ancestry (longer TL in individuals of African ancestry1) may be

explained in part by the genetic contribution to TL. The largest

cumulative effect of the sentinel variants, as evidenced from

the PTS, is for the category of neoplasms in the EAs, with higher

TL PTS associated with increased risk to the individual cancer

phenotypes (11 of the 14 significant results after Bonferroni
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correction for 1,704 tested phecodes were cancer related; Fig-

ure S6B; Table S6); associations were only nominal in the BioVU

AAs, likely due to lower power from the smaller sample size. Sin-

gle variant PheWAS (Table S6) in the BioVU EAs are largely repli-

cated within the UK Biobank (UKBB; Table S7), again showing

strong associations with neoplasms, and in general, demon-

strating the alleles that increased TL also increased risk for these

cancer-related phenotypes. In addition, analyses of both the

UKBB and BioVU data identified an association between the

HSPA1A locus (rs1008438) and type 1 diabetes-related endo-

crine/metabolism phenotypes (BioVU p 1.2 3 10�8 to 4.1 3

10�28, UKBBp 6.73 10�6 to 2.63 10�27 for a range of phecodes

grouped under 250.1); here, the allele decreasing TL increased

risk for these phenotypes (BioVU odds ratios 1.4–2.1, UKBB

odds ratios 1.4–2.2). This agreeswith prior associations between

shorter TL and increased risk of type 1 diabetes,40 and between

the protein product of HSPA1A (Hsp72) and diabetic

ketoacidosis.41

DISCUSSION

Leveraging WGS available through the NHLBI TOPMed pro-

gram, we have illustrated the value of a large, trans-population

WGS study for a harmonized phenotype of broad interest, bio-

informatically estimated TL, to identify new loci associated with

TL. The well-powered study enabled identification of rare

A B

C D E

Figure 3. Fine-mapping of multiple OBFC1 signals

(A) LocusZoom plot of the OBFC1 locus, where green dotted lines indicate each independent signal, as in Figure 2.

(B) Roadmap Epigenomics Consortium data in hg19 coordinates for skeletal muscle tissue, Primary T CD4+ memory cells from peripheral blood, and primary T

CD8+ naive cells from peripheral blood (Roadmap samples E108, E037, and E047, respectively; data were not available for sun-exposed skin). The ChromHMM

state model is shown for the 18-state auxiliary model. The state model suggests the primary (rs9420907), secondary (rs111447985), and tertiary (rs112163720)

signals are in the promoter region, while the quaternary signal (rs10883948) is in an enhancer region in all Roadmap blood cell types but is transcriptional for

peripheral blood monocytes and CD19+ B cells.

(C–E) GWAS and eQTL results for the primary (C), tertiary (D), and quaternary (E) signals. The top panels are the GWAS summary statistics from the primary, and

iterative conditional analyses that were used to perform colocalization analysis (secondary signal was rare and not available for colocalization). Bottom panels are

eQTLs for OBFC1 in the indicated tissue from GTEx. The GTEx eQTLs for these tissues do not colocalize with one another (PPH4 < 4.43 10�7), and each signal

did not significantly colocalize in the other tissues. LD was calculated from the pooled trans-population samples with respect to the sentinel (black diamond).

See also Figures S4 and S5 and Table S5.
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deleterious variants with estimated effect sizes larger than those

of common variants. Using WGS allowed us the unique opportu-

nity to hone in on causal variants using fine-mapping ap-

proaches for one locus, OBFC1, and begin to characterize tis-

sue-specific genetic effects for this locus. We were also able

to establish that for most population groups, effects are highly

consistent at sentinel variants, despite differences in association

strength at loci such as TINF2 and OBFC1, in which allele fre-

quencies varied among populations.

One of the main limitations to the interpretation of human ge-

netic studies of TL pertains to the heterogeneity and lack of stan-

dardization of various TL assays, and therefore comparability of

results (including the genetic effect sizes) between studies42,43

(Note S1). To date, there is a paucity of data directly comparing

WGS TL estimates with laboratory-based TL measurements in

large-scale genetic epidemiologic studies.44 In the present

study, we have performed an in-depth analysis of the robustness

of our TelSeq-derived TL and the resulting GWAS statistics and

report the following: (1) we confirm previous observations that

TelSeq estimates are consistently shorter than Southern blot

(mTRF), but that the 2 values are highly correlated44; (2) we

demonstrate a high degree of shared heritability (i.e., genetic

correlation) between TelSeq-derived and Southern blot-derived

TL using phenotype-on-phenotype measures of heritability in

the same subjects; (3) we see similarly high genetic correlation

using GWAS summary statistic measures between qPCR- and

TelSeq-derived TL GWASs in Europeans; (4) we show high cor-

relation of effect sizes at sentinel variants between TelSeq- and

qPCR-derived GWASs; and (5) we show that effect sizes from

TelSeq were consistently �50% lower compared to Southern

blot at the same variants measured on the same subjects mirror-

ing the correlation patterns noted in the original phenotypes

themselves.

Limitations of the study
The limitations of this study include the lack of datasets that

include TL measurements in diverse populations for replication

of the newly associated loci and genes; external studies are

limited to largely European and Asian ancestry. For example,

the identified effects at the ZMYM4 and P3H2 loci may be larger

in Hispanic/Latino and African ancestry populations, respec-

tively, than European. In both, the strength of the association,

the effect sizes, and percent variation explained in the context

of relative sample size in our data are larger in these non-Euro-

pean groups. Our lack of replication described heremay be over-

come with an ability to evaluate these loci in additional studies

with greater population representation.

In addition, in this study, we evaluate statistical significance for

association using p values that could result in anunequal ability

to define significance thresholds across allele frequencies (lower

allele frequencies need higher effect sizes, for example). Alterna-

tive approaches that consider effect sizes as a prioritization

scheme could be applied in the future.

Finally, our fine-mapping approach based on tissue expres-

sion is limited for many of the associated loci, due to their lack

of expression in GTEx tissues. Here, we followed up on the

OBFC1 locus because the gene of interest is expressed in mul-

tiple adult tissues readily available in eQTL resources such as

GTEx. In contrast, while TERT and TERC are important compo-

nents of telomerase, they have low to undetectable expression in

most GTEx tissue samples. As discussed by others, to

adequately fine-map these loci, data on stem cell and/or devel-

opmental tissues will be important.45

While our TelSeq-based TL measurements and the resulting

genetic effect sizes appear to be robust based on our com-

parison to laboratory-based assays (summarized above),

caveats described (Note S1) necessitate attention when inter-

preting and comparing the results between large-scale TL

genetic studies, especially from the perspective of clinical

risk quantification. Nonetheless, the ability to implement

sequence-based TL phenotype estimation in a large, trans-

population WGS dataset creates opportunities to meaningfully

expand our ability to evaluate the role of genes influencing TL

in human health and disease, to dissect the genetic basis to

TL differences across populations, and to set in place a model

to leverage preexisting resources of WGS to bioinformatically

quantify TL.
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mere length calls were derived from the raw sequence data as described in the Method details, and the phenotype covariates of age,

sex, and ancestry are available through the study-specific dbGaP accession IDs as listed in the supplementary information, Table S8.

This TOPMed work includes multiple studies, some of which are based on sensitive populations, precluding the unrestricted sharing

of GWAS summary statistics. The TOPMed dbGaP accession (dbGaP: phs001974.v3.p1) provides amechanism for sharing sensitive
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Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

TOPMed study populations
Our study involves human subjects only. To perform this genome-wide association study of telomere length, we leveraged the whole
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TOPMed phenotype data, by study Taliun et al., 202146 See Table S8 for dbGaP study phs IDs

TOPMed batch-adjusted telomere

length calls, by study

This paper See Table S8 for dbGaP study phs IDs

TOPMed GWAS summary statistics for trans-

population and population subgroup analyses

This paper dbGaP: phs001974.v3.p1

Software and algorithms

All original computer code This paper Zenodo: https://doi.org/10.5281/zenodo.5360775

TelSeq Ding et al., 201420 https://github.com/zd1/telseq

HARE Fang et al., 201924 https://github.com/tanglab/HARE

GENESIS (R package) Gogarten et al., 201947 https://bioconductor.org/packages/

release/bioc/html/GENESIS.html

10.18129/B9.bioc.GENESIS

CAVIAR Hormozdiari et al., 201448 http://genetics.cs.ucla.edu/

caviar/download.html

coloc Giambartolomei et al., 201449 https://chr1swallace.github.io/

coloc/articles/a01_intro.html

PheWAS (R package) Carroll et al., 201450 https://github.com/PheWAS/PheWAS
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currently consists of more than 80 participating studies,51 with a range of study designs as described in Taliun et al.46 Participants are

mainly U.S. residents with diverse ancestries (self-reported European, African, Hispanic/Latino, Asian, and Other). Smaller represen-

tation comes from non-US populations including Samoan, Brazilian, and Asian studies. Details on the specific samples included for

telomere length analysis are outlined below, details on the population groupings using HARE (harmonized ancestry and race/

ethnicity) are described in detail below, and final categories summarized in Table S1; additional information is also described by

TOPMed.51 Counts of subjects by sex are also included in Table S1. While sex is included as a covariate in all relevant models in

our analysis, we do not specifically investigate the effect of sex on telomere length in this work.

TOPMed whole-genome sequencing (WGS)
WGSwas performed to an average depth of 38X using DNA isolated from blood, PCR-free library construction, and Illumina HiSeq X

technology. Details for variant calling and quality control are described in Taliun et al.46 Briefly, variant discovery and genotype calling

was performed jointly, across all the available TOPMed Freeze 8 studies, using the GotCloud52 pipeline resulting in a single multi-

study genotype call set.

METHOD DETAILS

Estimating telomere length for WGS samples
A variety of computational tools exist that leverage WGS data to generate an estimate of telomere length.44 Here, we performed a

thorough comparison of two leading methods for estimating telomere length from WGS data to choose the preferred scalable

method for performing the estimation on all available samples from TOPMed. The first method, TelSeq,20 calculates an estimate

of individual telomere length using counts of sequencing reads containing a fixed number of repeats of the telomeric nucleotide motif

TTAGGG. Given that 98% of our data was sequenced using read lengths of 151 or 152 (as confirmed from the SEQ field in the

analyzed CRAM files), we chose to use a repeat number of 12. These read counts are then normalized according to the number

of reads in the individual WGS dataset with between 48% and 52% GC content to adjust for potential technical artifacts related

to GC content. The second method, Computel53 uses an alignment-based method to realign all sequenced reads from an individual

to a ‘‘telomeric reference sequence.’’ Reads aligning to this reference sequence are considered to be telomeric and are included in

the estimate of telomere length. Because Computel performs a complete realignment, additional computational steps are involved

compared to those needed for TelSeq.

To compare the results and scalability from these two methods, we first directly compared estimates obtained from TelSeq and

Computel on 2,398 samples from the Jackson Heart Study (JHS) and found them to be highly correlated with one another (Pearson

correlation r = 0.98, Figure S1A). We also compared computational time to generate the telomere length estimates on these samples

and show that Computel is around ten times more time-consuming (Figure S1B). This is in part due to the fact that Computel requires

CRAM-formatted files (as the WGS data are currently stored) to first be converted back to Fastq format (while TelSeq requires a

CRAM to BAM conversion), but also due to the computationally expensive step of realignment to the telomeric reference genome

that the Computel algorithm employs.

TelSeq generates an estimate of TL in bp similar to laboratory assays such as Southern blot21 and flowFISH;22 in contrast qPCR

approaches are represented as T/S ratios.54,55 As a further comparison to orthogonally measured telomere length values, we used

data on the same 2,398 samples from JHS with Southern blot21 telomere length estimates.56 For these samples, the Southern blot

assay was performed on the same source DNA sample that was used to generate the WGS in TOPMed. The Pearson correlation

values between the TelSeq and Computel estimates and the Southern blot estimates did not differ (r = 0.58 and 0.56 for TelSeq

and Computel, respectively, Figure S1C). Based on our observation that both Computel and TelSeq showed similar correlation to

the Southern blot estimates and high correlation with each other, and that TelSeq was an order of magnitude more computationally

efficient, we chose to use TelSeq to perform telomere length estimation on our data. Final telomere length estimation was performed

on a set of 128,901 samples whose CRAM-files were available for analysis at the TOPMed IRC at the time of analysis.

Batch adjustment to correct for confounders
To account for technical sources of variability in our telomere length estimates, bothwithin a study (see, for example, colors in Figures

S1A and S1C which indicate grouping by shared 96-well plate for shipment to the sequencing center) and across studies, we devel-

oped a method to estimate components of technical variability in our samples. We estimated these covariates using the sequencing

data itself, similar to methods developed for other multivariate genomics data types (SVA or PEER factors57,58), using aligned

sequencing reads and relying on the fact that genomic coverage patterns of aligned reads can reflect technical variation.

We computed average sequencing depth for every 1,000 bp genomic region (‘‘bin’’) genome-wide usingmosdepth.59We removed

bins known to be problematic: those containing repetitive DNA sequence with difficulty mapping (mappability < 1.0 using 50bp k-

mers in GEMTools v1.75960) or that overlap the list of known problematic SVs61 or overlap known CNVs in the Database of Genomic

Variants. To avoid overcorrecting for sex, bins were limited to autosomes. After normalizing the approximately 150,000 remaining bin

counts within sample, we performed Randomized Singular Value Decomposition62 (rSVD), a scalable alternative to principal compo-

nents analysis, to generate batch principal components (bPCs).We included increasing numbers of bPCs in a linear regressionmodel

predicting TelSeq TL, and computed the correlation of the resulting residuals with external data measurements, including Southern
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blot measurements for JHS (n = 2,398) and the Women’s Health Initiative (WHI; n = 596) and age at blood draw (JHS n = 3,294; WHI

n = 10,708). Based on the observed correlation, the final decision was to include the first 200 bPCs across all samples. Using the n =

2,398 JHS samples described above, we compared TL estimates before and after batch correction. The percent of variance in TL

explained by sequencing plate reduced from 21.9% (baseline) to 10.5% (200 bPCs), and the variance explained by age increased

from 8.0% (baseline) to 10.3% (200 bPCs), evidence that the signal-to-noise ratio was improved. Overall, the correlation between

the bPC corrected TL and Southern blot data improved from r = 0.58 to 0.68 (Figure S1D) in the JHS data and from r = 0.54 to

0.72 for the WHI data. Further, we compared TelSeq estimates of 19 samples within a single sequencing batch from the GeneSTAR

study to the clinical gold standard of flowFISH22 (Figure S1E) and observed a correlation of 0.80 in both granulocytes and lympho-

cytes. Therefore, our data show that we are able to reduce the sequencing artifacts stemming from batch variability to attain corre-

lation of TelSeq to Southern blot similar to the correlation of TelSeq to flowFISH.

Samples included in genetic analysis
All samples with telomere length estimated from the WGS data from TOPMed Freeze 8 were considered for inclusion, provided they

had consent that allowed for genetic analysis of telomere length. Only samples with sequencing read lengths of 151 or 152 base pairs

and having age at blood draw data available were included. For the set of samples that were part of a duplicate pair/group (either part

of the intended duplicates designed by TOPMed, or a duplicate identified across the studies through sample QC) only one sample

from each duplicated pair/group was retained. The final counts and demographic summary statistics for subjects grouped by

TOPMed study for all 54 studies included in our analysis are shown in Table S1.

While self-reported race (Asian, Black andWhite) andHispanic ethnicity group (Central American, Costa Rican, Cuban, Dominican,

Mexican, Puerto Rican, South American) data are available in TOPMed, these data have limitations for analysis that include individ-

uals with missing information or non-specific responses (e.g., ‘other’ or ‘multiple’) and high variability in genetically inferredmeasures

of ancestry among individuals with the same reported race/ethnicity. To overcome these limitations, we used a computational

method called HARE (harmonized ancestry and race/ethnicity), a newly developed machine learning approach for jointly leveraging

reported and genetic data in the definition of population strata for GWAS.24 HARE uses provided race/ethnicity labels and genetic

ancestry principal component (PC) values to compute probability estimates for each individual’s membership in each race/ethnicity

stratum. For our HARE analysis, we used provided race (Asian, Black, White) or Hispanic ethnicity group (Central American, Costa

Rican, Cuban, Dominican, Mexican, Puerto Rican, South American) as input labels to define population strata, and we used 11 PCs

computedwith PC-AiR63 using 638,486 LD-pruned (r2 < 0.1) autosomal variants withminor allele frequency > 1% to represent genetic

ancestry. Genetic outliers for population strata were identified as individuals for whom their maximum stratum probability was more

than 5 times greater than their reported stratum probability. Stratum values for genetic outliers and individuals with missing or non-

specific race/ethnicity were imputed as the stratum for which they had the highest membership probability.

Our primary analysis allowed for heterogeneous residual variance (see Primary single variant tests for association for details)

among groups defined jointly by study and HARE-based population stratum assignment, with minor study-specific modifications

to account for small strata. We required at least 30 individuals within a study-HARE grouping and collapsed individuals into merged

HARE groups within a study as necessary to retain everyone for analysis. For our population-specific analyses, we used HARE

assignment to stratify individuals into the following population groups: African (corresponding to the Black HARE stratum), Asian

(Asian), European (White), and Hispanic/Latino (Central American, Costa Rican, Cuban, Dominican, Mexican, Puerto Rican, and

South American). To better preserve genetic ancestry similarity among individuals in population-specific stratified analyses, we

restricted to individuals for whom their HARE population stratum membership probability was at least 0.7; the population stratum

counts in Table S1 reflect the counts in the stratified analyses, where individuals not meeting this criterion are labeled as ‘‘Other/

Uncertain.’’

Samoan individuals from the Samoan Adiposity Study and Brazilian individuals from the Reds-III Brazil study were excluded from

theHARE analyses due to their unique ancestry in the TOPMed dataset; these studieswere treated as their own population groups for

analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

Primary single variant tests for association
Genome-wide tests for association were performed using the RBioconductor packageGENESIS.47 The primary analysis included all

available trans-population TOPMed samples (n = 109,122). A secondary analysis was performed for all population groups with n >

5,000, which included European (n = 51,654), African (n = 29,260), Hispanic/Latino (n = 18,019) and Asian (n = 5,683) groups as

defined above using HARE. Prior to genetic modeling, we generated residuals from a linear regression model on all 109,122 samples

with 200 batch principal components (bPCs), as described above; for clarity we call these residuals TLbPC below. For the pooled

trans-population analysis, we used a fully adjusted two-stagemodel, as described in the next two bullets.64 For each population-spe-

cific analysis, the same approach was used, limited to samples within that population group.

Stage 1: We fit a linear mixed model (LMM) on n = 109,122 samples, using TLbPC as the outcome; adjusting for age, sex, study,

sequencing center, and 11 PC-AiR63 PCs of ancestry as fixed effect covariates; including a random effect with covariance matrix
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proportional to a sparse empirical kinship matrix computed with PC-Relate65 to account for genetic relatedness among samples;

and allowing for heteroskedasticity of residual variance across study-HARE groups as defined above. Themarginal residuals from

this Stage 1 model were then inverse-normalized and rescaled by their original standard deviation. This rescaling restores values

to the original trait scale, providing more meaningful effect size estimates from subsequent association tests.66

Stage 2: We fit a second LMM on all n = 109,122 samples, using the inverse-normalized and rescaled residuals from Stage 1 as

the outcome; all other aspects of the model including fixed effects adjustment, random effects, and residual variance structure

were identical to the model in Stage 1. This two-stage covariate adjustment has been shown to be most effective at controlling

for false-positives and increasing statistical power in this setting.64 The output of this Stage 2 model was then used to perform

both single variant and gene-based tests for association.

Single variant tests for association
We used the output of the two-stage LMM to perform score tests of association for each variant with minor allele count (MAC)R 5 that

passed TOPMed Informatics Research Center (IRC) at the University of Michigan quality filters46 and which had < 10% of samples with

readdepth<10.Genotypeeffect sizeestimatesandpercentofvariabilityexplained (PVE)wereapproximatedfromthescore test results.67

Significance, conditional analysis, locus definitions
A p value cutoff of 5x10�9 was used to determine genome-wide significance in the primary trans-ethnic analysis. We identified our set

of independent significant variants (as reported in Table 1) through an iterative conditioning process within each chromosome. For a

given chromosome, if at least one variant from the primary analysis crossed the genome-wide significance cutoff, this peak variant

was included as an additional fixed-effect covariate in a new two-stage LMM (see Stages 1 and 2 described above), and score test

results were examined to see if any remaining variants crossed the 5x10�9 threshold. If so, we performed a second round of condi-

tioning, including both the original peak variant and the new conditional peak variant as fixed-effect covariates in another two-stage

LMM; and so on, adding conditional peak variants for additional rounds (Table S2). For each chromosome, the conditioning proced-

ure was completed when no additional variants crossed the genome-wide threshold (p < 5x10�9) on that chromosome. At each step,

all variants passing the p < 5x10�9 threshold were examined in BRAVO68 to assess quality, and 334 variants were filtered out due to

variant call quality issues. In the case where a current peak variant was flagged for quality, the next most significant variant, provided

its p value was below the 5x10�9 cutoff, was considered the peak variant instead. Variants were grouped into loci based on physical

distance and an examination of linkage disequilibrium (LD) patterns, and locus names were determined using a combination of pre-

vious literature, known telomere biology, and physical location.

Cumulative percent of variability explained (PVE)
Through the iterative conditional approach, we identified a total of 59 variants (Table 1) that met our genome-wide significance

threshold of p < 5x10�9. The cumulative PVE values for this full set of 59 variants (4.35%), the set of 37 variants mapping to known

loci (3.38%), and the set of 22 variantsmapping to previously un-identified loci (0.96%, seeOverlapwith prior publishedGWASbelow

for definition of previously un-identified variants) were each estimated jointly using approximations frommulti-parameter score tests.

This joint PVE approximation is similar to the single variant PVE approximation described above, except that the set of variants is

tested jointly, accounting for covariance among the estimated variant effect sizes. This approach avoids inadvertently double count-

ing any partially shared signal among the set of identified variants.

Joint tests for association, cross-population heterogeneity
We then performed joint association analyses for the full multi-ethnic sample (n = 109,122), as well as each of the four population

groupswith n > 5000, to determine effect sizes and p valueswhen all 59 variants were considered together. Using the inverse-normal-

ized and rescaled residuals from the primary analysis Stage 1 LMM as the outcome, we fit a new Stage 2 LMM that was the same as

described above, except with the additional inclusion of the genotypes for these 59 variants as additive genetic fixed effects. Given

this joint modeling framework, the variant effect size estimates are all adjusted for one another. These estimates were used as input

for calculation of a polygenic trait score used for the PheWAS described below. Finally, we tested for heterogeneity of effect sizes

from these analyses among the population groups by adapting Cochran’s Q statistic and its p value,69 commonly used to test for

effect heterogeneity in meta-analysis (Table 1). For each variant, the effect size estimates and standard errors from each population

group analysis were used to calculate Q, and a Bonferroni threshold of 0.001 (0.05/59) was used to assess significance.

Overlap with prior published GWAS
For each of the 59 variants identified, we examined the linkage disequilibrium (LD) with previously reported sentinel variants from 17

published GWAS. Only sentinel variants with p < 5x10�8 in their published study were considered, which included a total of 56 var-

iants (Table S3). If one of our variants had LDR 0.7 with a published variant, it was labeled as a known variant/part of a known locus in

Table 1. Within a locus, we then compared each independent variant to the prior GWAS reported sentinel variant. If they were iden-

tical, the variant was labeled as a known sentinel variant in Table 1. Additionally, locus names for the final set of independent variants

were selected based on (i) prior GWAS study definition for known loci, and (ii) the specific gene annotation for each variant mapping

directly to a gene for previously un-identified loci.
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Replication of newly associated loci
To determine whether the loci newly associated in the current study are supported by findings from prior studies, we considered the

two largest most recent studies of telomere genetics in European19 (Li et al., n = 78,592) and Asian18 (Dorajoo et al., n = 26,875)

ancestry individuals. These studies both used telomere length as measured by qPCR. For all newly associated variants in Table

1, we pulled the effect size estimates, standard errors, and p values, where available (Figure S2A). These results were available in

at least one of the two studies for 19 of our 22 previously un-identified variants, so we considered a p value cutoff of 0.05/19 =

0.0026 to be replicated, after multiple testing correction. We also labeled variants where at least one study reported p < 0.05 as sug-

gestive. We compared effect sizes between the qPCR results and our TelSeq results, assessing correlation of all overlapping variants

(n = 37 for Dorajoo et al.,18 n = 43 for Li et al.,19 Figure S2B).

Comparison of Southern blot and TelSeq effect sizes
Using the 2,398 samples from JHSwith both TelSeq and Southern blot TLmeasurements, we used the same fully-adjusted two-stage

LMM framework to perform tests for genetic association at the 49 of 59 sentinel variants with MAFR 1% in this group. We calculated

Pearson correlation between the estimated effect sizes and fit a linear regression to relate them to one another as an estimate of dif-

ference in effect size magnitude (Figure S2C). The Stage 1 models from our LMM framework also provided estimated effect sizes for

the average change in Southern blot and TelSeq TL estimates in basepairs for a one-year difference in age at blood draw.

Genetic correlation of TelSeq with other TL estimates
We assessed genetic correlation of our TelSeq estimates with other TL estimates in twoways: (1) Using a subset of 1,083 of our 2,398

JHS samples with both Southern blot and TelSeq TL estimateswhowere either participants in the nested family cohort portion of JHS

or unselected 1st or 2nd degree relatives from the remaining samples,70 we measured genetic correlation (rG) of the Southern blot

and TelSeq TL estimates using SOLAR23; and (2) We performed cross-trait LD Score regression using LDSC27,28 [ to estimate genetic

correlation using genetic association summary statistics from our European ancestry group (n = 51,564) and summary statistics from

the Li et al. study,19 which used qPCR to measure TL on 78,592 individuals of European ancestry. We used pre-computed LD scores

from 1000 Genomes European data (downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.

bz2), and used the SNP list from https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2 tomatch up alleles across

studies and LD scores. After preprocessing and SNP checks (using defaults fromLDSC), wewere left with a set of 1,171,171 SNPs for

the LD Score regression analysis.

Gene-based coding variant tests - variant annotation
For its use in gene-based tests for association, annotation based variant filtering and GENCODE v29 gene model-based71 aggrega-

tion was performed using the TOPMed freeze 8WGSAGoogle BigQuery-based variant annotation database on the BioData Catalyst

powered by Seven Bridges platform (http://doi.org/10.5281/zenodo.3822858). The annotation database was built using variant an-

notations for TOPMed freeze 8 variants gathered by Whole Genome Sequence Annotator (WGSA) version v0.872 and formatted by

WGSAParsr version 6.3.8 (https://github.com/UW-GAC/wgsaparsr). Variants were annotated as exonic, splicing, transcript ablation/

amplification, ncRNA, UTR5, UTR3, intronic, upstream, downstream, or intergenic using Ensembl Variant effect predictor (VEP).73

Exonic variants were further annotated as frameshift insertion, frameshift deletion, frameshift block substitution, stop-gain, stop-

loss, start-loss, non-frameshift insertion, non-frameshift deletion, non-frameshift block substitution, nonsynonymous variant, synon-

ymous variant, or unknown. Additional scores used included REVEL,74 MCAP75 or CADD76 effect prediction algorithms.

Gene-based coding variant tests - tests for association
Gene-based association testing was performed on the pooled trans-population dataset (n = 109,122). To improve the power to iden-

tify rare variant associations in coding regions, we aggregated deleterious rare coding variants in all protein-coding genes and then

tested for association with telomere length. To enrich for likely functional variants, only variants with a ‘‘deleterious’’ consequence for

its corresponding gene or genes,77 were included. For each protein-coding gene, a set of rare coding variants (MAF < 0.01, including

singletonswhereMAC=1, restricted to variants which passed IRCquality filters46 andwhich had < 10%of samples with read depth <

10) was constructed, which was composed of all stop-gain, stop-loss, start-loss, transcript ablation, transcript amplification, splice

acceptor variants, splice donor variants and frameshift variants, as well as the exonic missense variants that fulfilled one of these

criteria: 1) REVEL score > 0.5, 2) predicted M_CAP value was ‘‘Damaging,’’ or 3) CADD PHRED-scaled score > 30. We applied

the variant Set Mixed Model Association Test (SMMAT)78 as implemented in GENESIS, using the genesis_tests app on the Analysis

Commons,79 with MAF based variant weights given by a beta-distribution with parameters of 1 and 25, as proposed by Wu et al.,80

and using the same two-stage LMMoutput as used in the primary single variant analysis. Only genes with a cumulativeMACR 5 over

all variants were evaluated, leaving a total of 27,558 genes, and significance was evaluated after a Bonferroni correction for multiple

testing (p < 0.05 / 27,558 = 1.815x10�6) (Figure S3).

Next, we sought to determine the influence of each rare deleterious variant in each significant gene on the association signal. We

iterated through the variants, removing one variant at a time (leave-one-out approach),81 and repeated the SMMAT analysis. If a

variant made a large contribution to the original association signal, one would expect the signal to be significantly weakened with

the removal of the variant from the set (Figure S3).

Cell Genomics 2, 100084, January 12, 2022 e5

Short article
ll

OPEN ACCESS

https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2
http://doi.org/10.5281/zenodo.3822858
https://github.com/UW-GAC/wgsaparsr


Finally, we further tested for independence of the gene-based and single variant signals by performing a conditional SMMAT anal-

ysis that included the 59 genome-wide significant variants from our primary analysis as fixed-effect covariates in the two-stage LMM.

These 59 variants were also removed from the aggregated set of rare variants for a gene if they had been previously included (e.g.,

rs202187871 in POT1). All other analysis parameters were the same as described above (Figure S3).

Colocalization of OBFC1 signals using GTEx and eQTLGen
Iterative conditional analysis was repeated for chromosome 10 focusing on a 2Mb window centered on the primary signal near

OBFC1 (rs10883948). The original pooled GWAS results (n = 109,122) were used for colocalization analysis with the primary signal

while the appropriate round of conditional analysis was used for each subsequent signal (e.g., the output of the second round of con-

ditional analysis was used for colocalization analysis with the tertiary signal). Credible set analysis was performed using CAVIAR on

primary signal data and the output of each conditional analysis each with a single assumed causal variant.48 For each independent

OBFC1 signal, the credible set contained the top sentinel variant (Figures S5A–S5D). Colocalization analysis was performed using

coloc, a Bayesian posterior probability method that estimates the probability of shared signal across testing modalities at each

variant.49 We report the posterior probability that the two signals are independent (PPH3) and the posterior probability that the

two signals overlap (PPH4). The sentinel variants from each signal were assayed as expression quantitative trait loci (eQTLs) in

both GTEx82 and eQTLGen38 datasets. For each sentinel, significant gene-tissue pairs for that sentinel were identified from GTEx

v8 (FDR < 0.05) and assayed for colocalization comparing the beta and standard error of the beta from our GWAS results and the

eQTL results. For colocalization analysis in the eQTLGen dataset, all eGenes within a 2Mb window of the sentinel were identified

and assayed for colocalization comparing the MAF, p value, and number of observations. MAF was estimated for eQTLGen data us-

ing the TOPMedMAF. Colocalization analysis was not possible for theOBFC1 secondary signal as that variant is absent in both data-

sets and a representative proxy variant was not available. Roadmap39 data was accessed July, 2020 using the hg19 (February, 2009

release) UCSC genome browser83 track data hubs.84,85

Phenome-wide association tests (PheWAS)
Using individual level data within the Vanderbilt University biobank BioVU, PheWAS86 (tests for association between genotype and

phenotype) were performed using the 49 (of 59) sentinel variants available in the multi-ethnic genotyping array (MEGA) chip results

imputed to the Haplotype Reference Consortium.87 Single variant tests using SNP dosage values were performed for all available

phecodes (number of cases at least 20), including the covariates age, sex, genotype batch and the first ten ancestry principal com-

ponents. Analysis was performed separately in BioVU self-identified African Americans (AA, n = 15,174) and BioVU self-identified

European Americans (EA, n = 70,439). In addition, European and African specific effect sizes from the joint analysis from Table 1

were combined to create separate polygenic trait scores (PTS) for each population group which were then tested for association

with available phecodes, again including the covariates age, sex, genotype batch and the first ten ancestry principal components.

Results were evaluated at a Bonferroni threshold corrected for the number of informative phecodes for each variant (range n = 1,114-

1,361) or the PTS (n = 1,704) (Figure S6; Table S6). Analysis was performed using the PheWAS R package.50

We queried United Kingdom Biobank (UKBB) GWAS results using the University of Michigan PheWeb web interface (http://

pheweb.sph.umich.edu/SAIGE-UKB/). The UKBB PheWeb interface contains results from a SAIGE88 genetic analysis of 1,403

ICD-based traits of 408,961 UKBB participants of European ancestry. PheWeb is a publicly accessible database that allows querying

genome-wide association results for 28 million imputed genetic variants. 47 out of our 59 sentinel variants were present in PheWeb.

We report all hits passing a Bonferroni correction for the number of tests performed for each variant (0.05/1403 = 3.6x10�5, Table S7).
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