469 research outputs found

    Production of High-Purity 123-I for Clinical and Research Purposes

    Get PDF
    This work was supported by National Science Foundation Grant PHY 76-84033 and Indiana Universit

    Q-switched laser damage of infrared nonlinear materials

    No full text
    Q-switched laser-damage thresholds have been determined for six materials (proustite – Ag3AsS3, pyrargyrite – Ag3SbS3, cinnabar – HgS, silver thiogallate – AgGaS2, tellurium – Te, and gallium arsenide – GaAs) of interest for nonlinear optics in the medium infrared. Four TEM00 mode lasers were employed with outputs at wavelengths of 694 nm, 1.06, 2.098, and 10.6 ”m. Damage has been found to be confined to the surface of the crystals and occurs for radiation intensities between 3 and 75 MW/cm2. Particular care is needed in the cutting and polishing of tellurium crystals if a high-damage threshold is to be achieved

    Production of High-Purity 123-I for Clinical and Research Purposes

    Get PDF
    This work was supported by National Science Foundation Grant PHY 75-00289 and Indiana Universit

    Seminal plasma and prostaglandin E2 up-regulate fibroblast growth factor 2 expression in endometrial adenocarcinoma cells via E-series prostanoid-2 receptor-mediated transactivation of the epidermal growth factor receptor and extracellular signal-regulated kinase pathway

    Get PDF
    BACKGROUND: Prostaglandin E(2) (PGE(2)) has been shown to modulate angiogenesis and tumour progression via the E-series prostanoid-2 (EP2) receptor. Endometrial adenocarcinomas may be exposed to endogenous PGE(2) and exogenous PGE(2), present at high concentration in seminal plasma. METHODS: This study investigated fibroblast growth factor 2 (FGF2) mRNA expression and cell signalling in response to seminal plasma or PGE(2), using an endometrial adenocarcinoma (Ishikawa) cell line stably expressing the EP2 receptor (EP2 sense cells) and endometrial adenocarcinoma explants. RESULTS: Seminal plasma and PGE(2) induced a significant up-regulation of FGF2 expression in EP2 sense but not parental untransfected Ishikawa (wild-type) cells (P < 0.05). These effects were inhibited by co-treatment with EP2 receptor antagonist or inhibitors of protein kinase A, c-Src, epidermal growth factor receptor (EGFR) kinase or extracellular signal-regulated kinase (ERK) signalling. The treatment of EP2 sense cells with seminal plasma induced cAMP accumulation and phosphorylation of c-Src, EGFR kinase and ERK via the EP2 receptor. Finally, seminal plasma and PGE(2) significantly increased FGF2 mRNA expression in endometrial adenocarcinoma tissue explants via the EP2 receptor (P < 0.05). CONCLUSIONS: Seminal plasma and PGE(2) can similarly activate FGF2 expression and EP2 receptor signalling in endometrial adenocarcinoma cells. These data highlight the potential for seminal plasma exposure to facilitate tumorigenesis–angiogenesis in endometrial adenocarcinomas in vivo

    Hormone factors play a favorable role in female head and neck cancer risk.

    Get PDF
    Due to lower female incidence, estimates of exogenous and endogenous hormonal factors in head and neck cancers (HNCs, comprising cancers of the oral cavity, oropharynx, hypopharynx, and larynx) among women have been inconsistent and unable to account for key HNC risk factors. We pooled data from 11 studies from Europe, North America, and Japan. Analysis included 1572 HNC female cases and 4343 controls. Pooled odds ratios (ORs) estimates and their 95% confidence intervals (CIs) were calculated using multivariate logistic regression models adjusting for tobacco smoking and alcohol drinking. Lower risk was observed in women who used hormone replacement therapy (HRT) (OR = 0.58; 95% CI: 0.34-0.77). Pregnancy (OR = 0.61; 95% CI: 0.42-0.90) and giving birth (OR = 0.59; 95% CI: 0.38-0.90) at &lt;35 years of age were inversely associated with HNCs. An inverse association with HNC was observed with age at start of HRT use (OR = 0.59; 95% CI: 0.39-0.90) for each additional 10 years and with duration of use (OR = 0.87; 95% CI: 0.76-0.99 for every 3 years). Exogenous female hormone use is associated with a nearly twofold risk reduction in female HNCs. The lower female HNC incidence may, in part, be explained by endogenous and exogenous estrogen exposures

    Phenomenological analysis of simple ion channel block in large populations of uncoupled cardiomyocytes

    Get PDF
    Current understanding of arrhythmia mechanisms and design of anti-arrhythmic drug therapies hinges on the assumption that myocytes from the same region of a single heart have similar, if not identical, action potential waveforms and drug responses. On the contrary, recent experiments reveal significant heterogeneity in uncoupled healthy myocytes both from different hearts as well as from identical regions within a single heart. In this work, a methodology is developed for quantifying the individual electrophysiological properties of large numbers of uncoupled cardiomyocytes under ion channel block in terms of the parameters values of a conceptual fast-slow model of electrical excitability. The approach is applied to a population of nearly 500 rabbit ventricular myocytes for which action potential duration (APD) before and after the application of the drug nifedipine was experimentally measured (Lachaud et al., 2022, Cardiovasc. Res.). To this end, drug action is represented by a multiplicative factor to an effective ion conductance, a closed form asymptotic expression for APD is derived and inverted to determine model parameters as functions of APD and ΔAPD (drug-induced change in APD) for each myocyte. Two free protocol-related quantities are calibrated to experiment using an adaptive-domain procedure based on an original assumption of optimal excitability. The explicit APD expression and the resulting set of model parameter values allow (a) direct evaluation of conditions necessary to maintain fixed APD or ΔAPD, (b) predictions of the proportion of cells remaining excitable after drug application, (c) predictions of stimulus period dependency and (d) predictions of dose-response curves, the latter being in agreement with additional experimental data

    Deterministic delivery of externally cold and precisely positioned single molecular ions

    Full text link
    We present the preparation and deterministic delivery of a selectable number of externally cold molecular ions. A laser cooled ensemble of Mg^+ ions subsequently confined in several linear Paul traps inter-connected via a quadrupole guide serves as a cold bath for a single or up to a few hundred molecular ions. Sympathetic cooling embeds the molecular ions in the crystalline structure. MgH^+ ions, that serve as a model system for a large variety of other possible molecular ions, are cooled down close to the Doppler limit and are positioned with an accuracy of one micrometer. After the production process, severely compromising the vacuum conditions, the molecular ion is efficiently transfered into nearly background-free environment. The transfer of a molecular ion between different traps as well as the control of the molecular ions in the traps is demonstrated. Schemes, optimized for the transfer of a specific number of ions, are realized and their efficiencies are evaluated. This versatile source applicable for broad charge-to-mass ratios of externally cold and precisely positioned molecular ions can serve as a container-free target preparation device well suited for diffraction or spectroscopic measurements on individual molecular ions at high repetition rates (kHz).Comment: 11 pages, 8 figure

    Cyclooxygenase enzyme expression and E series prostaglandin receptor signalling are enhanced in heavy menstruation

    Get PDF
    BACKGROUND: Although the mechanisms underlying the causes of heavy menstrual blood loss (MBL) remain to be elucidated, prostaglandins have been previously implicated. This study was initiated to elucidate a pattern of expression of the various components of the cyclooxygenase (COX)–prostaglandin signalling pathways present in the endometrium of women with normal and heavy MBLs. METHODS: Endometrial biopsies were collected at different stages of the menstrual cycle from women who underwent measurement of MBL. Tissue was divided for either examination of gene expression by quantitative RT–PCR analysis or in vitro culture experimentation. RESULTS: Analysis of gene expression demonstrated a significant elevation in expression of COX-1 and COX-2 mRNA in endometrium obtained from women with heavy MBL when compared with endometrium obtained from women with normal MBL. Tissue culture with PGE(2) stimulation caused a significantly elevated production of cyclic AMP (cAMP) by endometrium of women with heavy MBL when compared with normal MBL. Expression of phosphodiesterase 4B, an enzyme involved in cAMP breakdown, was reduced in these same endometrial samples obtained from women with heavy MBL. CONCLUSIONS: These data identify the E series prostaglandin receptors and their signalling pathways as potential therapeutic targets in the treatment of heavy menstruation
    • 

    corecore