296 research outputs found

    Multi-label classification using ensembles of pruned sets

    Get PDF
    This paper presents a Pruned Sets method (PS) for multi-label classification. It is centred on the concept of treating sets of labels as single labels. This allows the classification process to inherently take into account correlations between labels. By pruning these sets, PS focuses only on the most important correlations, which reduces complexity and improves accuracy. By combining pruned sets in an ensemble scheme (EPS), new label sets can be formed to adapt to irregular or complex data. The results from experimental evaluation on a variety of multi-label datasets show that [E]PS can achieve better performance and train much faster than other multi-label methods

    The development and characterisation of porphyrin isothiocyanate–monoclonal antibody conjugates for photoimmunotherapy

    Get PDF
    A promising approach to increase the specificity of photosensitisers used in photodynamic therapy has been through conjugation to monoclonal antibodies (MAb) directed against tumour-associated antigens. Many of the conjugations performed to date have relied on the activated ester method, which can lead to impure conjugate preparations and antibody crosslinking. Here, we report the development of photosensitiser–MAb conjugates utilising two porphyrin isothiocyanates. The presence of a single reactive isothiocyanate allowed facile conjugation to MAb FSP 77 and 17.1A directed against internalising antigens, and MAb 35A7 that binds to a non-internalising antigen. The photosensitiser–MAb conjugates substituted with 1–3 mol of photosensitiser were characterised in vitro. No appreciable loss of immunoreactivity was observed and binding specificity was comparable to that of the unconjugated MAb. Substitution with photosensitiser had a minimal effect on antibody biodistribution in vivo for the majority of the conjugates, although a decreased serum half-life was observed using a cationic photosensitiser at the higher loading ratios. Tumour-to-normal tissue ratios as high as 33.5 were observed using MAb 35A7 conjugates. The internalising conjugate showed a higher level of phototoxicity as compared with the non-internalising reagent, using a cell line engineered to express both target antigens. These data demonstrate the applicability of the isothiocyanate group for the development of high-quality conjugates, and the use of internalising MAb to significantly increase the photodynamic efficiency of conjugates during photoimmunotherapy

    Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer.

    Get PDF
    Engineered nanomaterials that produce reactive oxygen species on exposure to X- and gamma-rays used in radiation therapy offer promise of novel cancer treatment strategies. Similar to photodynamic therapy but suitable for large and deep tumors, this new approach where nanomaterials acting as sensitizing agents are combined with clinical radiation can be effective at well-tolerated low radiation doses. Suitably engineered nanomaterials can enhance cancer radiotherapy by increasing the tumor selectivity and decreasing side effects. Additionally, the nanomaterial platform offers therapeutically valuable functionalities, including molecular targeting, drug/gene delivery, and adaptive responses to trigger drug release. The potential of such nanomaterials to be combined with radiotherapy is widely recognized. In order for further breakthroughs to be made, and to facilitate clinical translation, the applicable principles and fundamentals should be articulated. This review focuses on mechanisms underpinning rational nanomaterial design to enhance radiation therapy, the understanding of which will enable novel ways to optimize its therapeutic efficacy. A roadmap for designing nanomaterials with optimized anticancer performance is also shown and the potential clinical significance and future translation are discussed

    Identifying Selected Regions from Heterozygosity and Divergence Using a Light-Coverage Genomic Dataset from Two Human Populations

    Get PDF
    When a selective sweep occurs in the chromosomal region around a target gene in two populations that have recently separated, it produces three dramatic genomic consequences: 1) decreased multi-locus heterozygosity in the region; 2) elevated or diminished genetic divergence (FST) of multiple polymorphic variants adjacent to the selected locus between the divergent populations, due to the alternative fixation of alleles; and 3) a consequent regional increase in the variance of FST (S2FST) for the same clustered variants, due to the increased alternative fixation of alleles in the loci surrounding the selection target. In the first part of our study, to search for potential targets of directional selection, we developed and validated a resampling-based computational approach; we then scanned an array of 31 different-sized moving windows of SNP variants (5–65 SNPs) across the human genome in a set of European and African American population samples with 183,997 SNP loci after correcting for the recombination rate variation. The analysis revealed 180 regions of recent selection with very strong evidence in either population or both. In the second part of our study, we compared the newly discovered putative regions to those sites previously postulated in the literature, using methods based on inspecting patterns of linkage disequilibrium, population divergence and other methodologies. The newly found regions were cross-validated with those found in nine other studies that have searched for selection signals. Our study was replicated especially well in those regions confirmed by three or more studies. These validated regions were independently verified, using a combination of different methods and different databases in other studies, and should include fewer false positives. The main strength of our analysis method compared to others is that it does not require dense genotyping and therefore can be used with data from population-based genome SNP scans from smaller studies of humans or other species

    The global distribution of the Duffy blood group

    Get PDF
    Blood group variants are characteristic of population groups, and can show conspicuous geographic patterns. Interest in the global prevalence of the Duffy blood group variants is multidisciplinary, but of particular importance to malariologists due to the resistance generally conferred by the Duffy-negative phenotype against Plasmodium vivax infection. Here we collate an extensive geo-database of surveys, forming the evidence-base for a multi-locus Bayesian geostatistical model to generate global frequency maps of the common Duffy alleles to refine the global cartography of the common Duffy variants. We show that the most prevalent allele globally was FY*A, while across sub-Saharan Africa the predominant allele was the silent FY*BES variant, commonly reaching fixation across stretches of the continent. The maps presented not only represent the first spatially and genetically comprehensive description of variation at this locus, but also constitute an advance towards understanding the transmission patterns of the neglected P. vivax malaria parasite

    Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers

    Get PDF
    Information about the genetic diversity and population structure in elite breeding material is of fundamental importance for the improvement of crops. The objectives of our study were to (a) examine the population structure and the genetic diversity in elite maize germplasm based on simple sequence repeat (SSR) markers, (b) compare these results with those obtained from single nucleotide polymorphism (SNP) markers, and (c) compare the coancestry coefficient calculated from pedigree records with genetic distance estimates calculated from SSR and SNP markers. Our study was based on 1,537 elite maize inbred lines genotyped with 359 SSR and 8,244 SNP markers. The average number of alleles per locus, of group specific alleles, and the gene diversity (D) were higher for SSRs than for SNPs. Modified Roger’s distance (MRD) estimates and membership probabilities of the STRUCTURE matrices were higher for SSR than for SNP markers but the germplasm organization in four heterotic pools was consistent with STRUCTURE results based on SSRs and SNPs. MRD estimates calculated for the two marker systems were highly correlated (0.87). Our results suggested that the same conclusions regarding the structure and the diversity of heterotic pools could be drawn from both markers types. Furthermore, although our results suggested that the ratio of the number of SSRs and SNPs required to obtain MRD or D estimates with similar precision is not constant across the various precision levels, we propose that between 7 and 11 times more SNPs than SSRs should be used for analyzing population structure and genetic diversity

    A green fluorescent protein-expressing murine tumour but not its wild-type counterpart is cured by photodynamic therapy

    Get PDF
    The ideal cancer treatment should both destroy the primary tumour and at the same time educate the immune system to recognise the tumour as foreign so that distant metastases will also be eradicated. Photodynamic therapy (PDT) involves the i.v. administration of photosensitisers followed by illumination of the tumour with red light producing reactive oxygen species that eventually cause vascular shutdown and tumour cell death by apoptosis and necrosis. Anti-tumour immunity is stimulated after PDT due to the acute inflammatory response, generation of tumour-specific antigens, and induction of heat-shock proteins. Green fluorescent protein (GFP) is used as an optical reporter to noninvasively image the progression of mouse tumours, and in addition, may act as a foreign (jellyfish) antigen. We asked whether GFP-expressing tumours could be used to monitor the response of tumour-bearing mice to PDT, and whether the tumour response differed when a nonimmunogenic tumour cell line was transduced with GFP. We injected RIF-1 or RIF-1 EGFP (stably transduced with a retroviral vector) cells in the leg of C3H/HeN mice and both the cells and tumour grew equally well. We used PDT with benzoporphyrin derivative and a short drug-light interval. There were complete cures and 100% mouse survival of RIF-1 EGFP while RIF-1 wild-type tumours all recurred. Cured mice were resistant to rechallenge with RIF-1 EGFP cells and a rechallenge with wild-type RIF-1 cells grew significantly slower. There was also slower RIF-1 EGFP rechallenge growth but no rejection when RIF-1 EGFP tumours were surgically removed. There was a low rate of PDT cure of tumours when RIF-1 cells were transduced with an empty retroviral vector. The presence of antibodies against EGFP in mouse serum suggests EGFP can act as a foreign antigen and PDT can then stimulate a long-term memory immune response

    The inner junction protein CFAP20 functions in motile and non-motile cilia and is critical for vision

    Get PDF
    Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.</p

    Regulation of mitochondrial morphogenesis by annexin a6.

    Get PDF
    Mitochondrial homeostasis is critical in meeting cellular energy demands, shaping calcium signals and determining susceptibility to apoptosis. Here we report a role for anxA6 in the regulation of mitochondrial morphogenesis, and show that in cells lacking anxA6 mitochondria are fragmented, respiration is impaired and mitochondrial membrane potential is reduced. In fibroblasts from AnxA6(-/-) mice, mitochondrial Ca(2+) uptake is reduced and cytosolic Ca(2+) transients are elevated. These observations led us to investigate possible interactions between anxA6 and proteins with roles in mitochondrial fusion and fission. We found that anxA6 associates with Drp1 and that mitochondrial fragmentation in AnxA6(-/-) fibroblasts was prevented by the Drp1 inhibitor mdivi-1. In normal cells elevation of intracellular Ca(2+) disrupted the interaction between anxA6 and Drp1, displacing anxA6 to the plasma membrane and promoting mitochondrial fission. Our results suggest that anxA6 inhibits Drp1 activity, and that Ca(2+)-binding to anxA6 relieves this inhibition to permit Drp1-mediated mitochondrial fission

    Denudation of the continental shelf between Britain and France at the glacial-interglacial timescale

    Get PDF
    The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial-interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian-Eemian-early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of palaeovalley-fills that are preserved as a strath terrace. The data presented here reveal a composite erosional and depositional record that has undergone a high degree of reworking over multiple sea-level cycles leading to the preferential preservation of sediments associated with the most recent glacial-interglacial period
    corecore