6,791 research outputs found

    Androhermaphrodites of Lychnis Alba

    Get PDF
    Lychnis alba was found to produce four categories of flowers; i.e. pistillate, staminate, gynohermaphrodite and androhermaphrodite. Hermaphrodites are formed when a rudimentary pistil (pistillodium) or stamens (staminodea) develop into mature organs on the ovaries of otherwise pistillate or staminate flowers. Androhermaphrodites, in particular, were studied and their structure and behavior found to be essentially similar to corresponding parts of regular staminate and pistillate flowers. Ovaries of androhermaphrodite flowers exhibited variations in style number ranging from one to five. Ovaries with two to five styles were self- or cross-fertile with any good Lychnis alba pollen. One-styled ovaries of androhermaphrodite flowers were of unusual interest because they occurred so commonly, showed a range of development from a pistillodium to a mature ovary, and because they were characteristically self- and cross-sterile

    Unobscured Type 2 Active Galactic Nuclei

    Get PDF
    Type 2 active galactic nuclei (AGNs) with intrinsically weak broad emission lines (BELs) would be exceptions to the unified model. After examining a number of proposed candidates critically, we find that the sample is contaminated significantly by objects with BELs of strengths indicating that they actually contain intermediate-type AGNs, plus a few Compton-thick sources as revealed by extremely low ratios of X-ray to nuclear IR luminosities. We develop quantitative metrics that show two (NGC 3147 and NGC 4594) of the remaining candidates to have BELs 2-3 orders of magnitude weaker than those of typical type 1 AGNs. Several more galaxies remain as candidates to have anomalously weak BELs, but this status cannot be confirmed with the existing information. Although the parent sample is poorly defined, the two confirmed objects are well under 1% of its total number of members, showing that the absence of a BEL is possible, but very uncommon in AGN. We evaluate these two objects in detail using multi-wavelength measurements including new IR data obtained with Spitzer and ground-based optical spectropolarimeteric observations. They have little X-ray extinction with N_H < ~10^(21) cm^(–2). Their IR spectra show strong silicate emission (NGC 4594) or weak aromatic features on a generally power-law continuum with a suggestion of silicates in emission (NGC 3147). No polarized BEL is detected in NGC 3147. These results indicate that the two unobscured type 2 objects have circumnuclear tori that are approximately face-on. Combined with their X-ray and optical/UV properties, this behavior implies that we have an unobscured view of the nuclei and thus that they have intrinsically weak BELs. We compare their properties with those of the other less-extreme candidates. We then compare the distributions of bolometric luminosities and accretion rates of these objects with theoretical models that predict weak BELs

    Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    Get PDF
    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems

    The Composition of Inorganic Colloids Extracted from Three Iowa Soils

    Get PDF
    The purpose of this work was to determine the colloidal content of certain soils and to make analyses of the inorganic colloids extracted from these soils. These soils ranging from a pH of 5.53 to a pH of 7.60 were obtained and the total colloidal content determined. The inorganic colloids were then extracted according to Truog and Drosdorff\u27s procedure (2) and analyzed for total SiO2 , Al2O3 , Fe2O3 , TiO2 , P2O5 and available K2O. The total SiO2, Fe2O3, Al2O3 and TiO2 were determined by Hillebrand\u27s method (1). The phosphorus content was determined by the magnesium nitrate method. The available K2O was determined by the Aspergillus niger method

    Amended Complaint

    Get PDF

    Amended Complaint

    Get PDF

    Concurrent Relations between Face Scanning and Language: A Cross-Syndrome Infant Study.

    Get PDF
    Typically developing (TD) infants enhance their learning of spoken language by observing speakers' mouth movements. Given the fact that word learning is seriously delayed in most children with neurodevelopmental disorders, we hypothesized that this delay partly results from differences in visual face scanning, e.g., focusing attention away from the mouth. To test this hypothesis, we used an eye tracker to measure visual attention in 95 infants and toddlers with Down syndrome (DS), fragile X syndrome (FXS), and Williams syndrome (WS), and compared their data to 25 chronological- and mental-age matched 16-month-old TD controls. We presented participants with two talking faces (one on each side of the screen) and a sound (/ga/). One face (the congruent face) mouthed the syllable that the participants could hear (i.e., /ga/), while the other face (the incongruent face) mouthed a different syllable (/ba/) from the one they could hear. As expected, we found that TD children with a relatively large vocabulary made more fixations to the mouth region of the incongruent face than elsewhere. However, toddlers with FXS or WS who had a relatively large receptive vocabulary made more fixations to the eyes (rather than the mouth) of the incongruent face. In DS, by contrast, fixations to the speaker's overall face (rather than to her eyes or mouth) predicted vocabulary size. These findings suggest that, at some point in development, different processes or strategies relating to visual attention are involved in language acquisition in DS, FXS, and WS. This knowledge may help further explain why language is delayed in children with neurodevelopmental disorders. It also raises the possibility that syndrome-specific interventions should include an early focus on efficient face-scanning behaviour

    The Ohio Beef Marketing Program

    Get PDF

    Optimal Padding for the Two-Dimensional Fast Fourier Transform

    Get PDF
    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that can benefit from this algorithm, including optics, image-processing, signal-processing, and engineering applications
    • …
    corecore