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Abstract
Typically developing (TD) infants enhance their learning of spoken language by observing

speakers’mouth movements. Given the fact that word learning is seriously delayed in most

children with neurodevelopmental disorders, we hypothesized that this delay partly results

from differences in visual face scanning, e.g., focusing attention away from the mouth. To

test this hypothesis, we used an eye tracker to measure visual attention in 95 infants and

toddlers with Down syndrome (DS), fragile X syndrome (FXS), and Williams syndrome

(WS), and compared their data to 25 chronological- and mental-age matched 16-month-old

TD controls. We presented participants with two talking faces (one on each side of the

screen) and a sound (/ga/). One face (the congruent face) mouthed the syllable that the par-

ticipants could hear (i.e., /ga/), while the other face (the incongruent face) mouthed a differ-

ent syllable (/ba/) from the one they could hear. As expected, we found that TD children with

a relatively large vocabulary made more fixations to the mouth region of the incongruent

face than elsewhere. However, toddlers with FXS or WS who had a relatively large recep-

tive vocabulary made more fixations to the eyes (rather than the mouth) of the incongruent

face. In DS, by contrast, fixations to the speaker’s overall face (rather than to her eyes or

mouth) predicted vocabulary size. These findings suggest that, at some point in develop-

ment, different processes or strategies relating to visual attention are involved in language

acquisition in DS, FXS, and WS. This knowledge may help further explain why language is

delayed in children with neurodevelopmental disorders. It also raises the possibility that

syndrome-specific interventions should include an early focus on efficient face-scanning

behaviour.

Introduction
From birth, infants are exposed to a socially rich environment, frequently seeing and hearing
talking faces. Moreover, early on they show biases that orient them towards socially-relevant
information such as face-like stimuli [1–2] and speech-like sounds [3–5]. Through their
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massive experience with talking faces, infants develop the capacity to detect face-voice syn-
chrony [6–10], to match lip movements to speech sounds [11–13], and to use visual speech
cues to enhance their speech perception [14–18]. Moreover, they learn to use visual speech
cues even in the absence of auditory speech information. For instance, when presented with
silent video clips of speakers reciting sentences, 4- and 6-month-olds can visually discriminate
their native language from an unfamiliar one [19].

Although much research has focused on the infant’s ability to process auditory speech [20],
and while some has examined how infants extract visual information from talking faces [19]
and integrate auditory/visual speech input (e.g., [14]), little is known about how these basic-
level abilities are used to construct higher-level language skills. This is because few studies have
explored the link between face scanning and language ability. One study, involving typically
developing (TD) infants and infants at high risk of developing autism, used growth curve anal-
yses to demonstrate that 6-month-olds who fixated more on their mother’s mouth during live
mother-child interaction develop language at significantly higher rates and have significantly
higher expressive scores at 24 months than infants who fixated more on their mother’s eyes
[21]. This effect amounted to a difference of more than 4 months in developmental age, which
suggests that gaze to mouth is a useful predictor of individual differences in language develop-
ment. Importantly, no differences were found between the high-risk infants and TD controls.
The finding was also independent of autism diagnosis at outcome. Thus, the authors concluded
that their finding reveals a normativemechanism of language development. Because an infant’s
ability to perceive phonemes facilitates his or her acquisition of language [22], Young and col-
leagues [21] hypothesise that any developmental phenomenon—including visual attention to
the mouth—that facilitates speech perception will also facilitate later language development.
Furthermore, adult research by Schwartz, Berthommier, and Savariaux [23] has shown that
viewing a speaker’s mouth improves the intelligibility of their speech when embedded in noise.
In other words, not only does visual input from the mouth contribute to infants’ learning of
auditory phoneme categories [24]—and thus to their ability to acquire language—but it may be
especially helpful at all ages for speech perception under noisy conditions [25].

The adult findings of Schwartz et al. [23] have yet to be demonstrated in TD children. How-
ever, the findings of Young et al. [21] have received support from an event-related potentials
(ERP) study. Key, Stone, and Williams [26] presented 9-month-old infants with photographs
of an unfamiliar face. On 30% of the trials, they replaced the eyes or mouth of the face with the
corresponding parts (eyes, mouth) of a different face. Whereas eye changes only had an effect
on face perception mechanisms (as reflected by a larger occipito-temporal N290 ERP compo-
nent with short latency), the N290 response to mouth changes was also correlated with a par-
ent-report measure of receptive communication. In other words, the size of the N290 brain
response to visual changes in the mouth region of a face was positively correlated with language
ability in a group of TD 9-month-olds. Thus, observing lip movements provides speech-related
information and plays an important role in communication (see also [27–29]).

Conversely, Reid and Striano [30] suggest that focusing on the eyes (i.e., rather than the
mouth) is crucial for language development, because eye gaze is a precursor to complex joint
attention skills, imitation, and acquiring new knowledge and skills (see also [31]). For example,
children acquire expressive labels for objects partly by following another person’s gaze to an
object while that person provides the corresponding label. Indeed, in line with Reid and Stria-
no’s prediction, greater attention to eyes in 6-month-olds has been associated with better joint
attention skills at 8 and 12 months [32], and gaze following in 6-month-olds has been posi-
tively associated with vocabulary size at 18 months [33–34].

Why is there disagreement over whether the eyes or the mouth are more important as the
focus of attention for language development? We suggest that the importance of mouth gaze
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versus eye gaze may change as a function of developmental time. According to the literature,
eye gaze is important for joint attention, triadic attention, emotional face processing, imitation,
etc., but mouth gaze may play a critical role in extracting visual information (e.g., lip reading)
that facilitates understanding of unfamiliar, noisy, or confusing (auditory) speech. Indeed, the
infant’s focus of attention to features in talking faces changes over the course of the first year of
life. Lewkowicz and Hansen-Tift [35] presented 4-, 6-, 8-, 10-, and 12-month-old English-
learners with video clips of a female speaking either the infants’ native (English) or a non-
native (Spanish) language. Irrespective of language familiarity, 4-month-olds looked longer at
the eyes, 6-month-olds looked equally long at the eyes and the mouth, and 8- and 9-month-
olds looked longer at the mouth area. Twelve-month-olds looked equally long at the eyes and
mouth when native speech was spoken, whereas they maintained their looking towards the
mouth area for the non-native language. The authors argue that expertise (e.g., perceptual nar-
rowing) explains this behaviour: non-native speech requires complementary audio-visual cues
from the mouth region. Although Lewkowicz and Hansen-Tift did not measure language abil-
ity in the studied children, they concluded that—from around 8 months of age—attention to a
speaker’s mouth “corresponds to the emergence of speech production during typical develop-
ment and, thus, suggests that access to the redundant audiovisual cues available in the mouth is
critical for normal development” (p.1435).

From this literature, we hypothesized that face-scanning patterns would be associated with
language ability and, in particular, would change over developmental time. Such findings could
have important implications for atypical development. Children with neurodevelopmental dis-
orders often present with language delay [36]. Could their language delay be partly explained
by atypical face scanning patterns? Interestingly, there is some evidence that visual scanning
patterns differ across atypical populations [37]. For instance, individuals with Williams syn-
drome (a rare genetic disorder) spend significantly more time looking at the eyes of a face than
TD controls [38–41], whereas those with fragile X syndrome (a different, more common
genetic disorder) often avoid eye contact altogether [42]. (To our knowledge, the relationship
between eye gaze aversion in FXS and language ability has never hitherto been explored.)

To address our question (‘Could language delay be partly explained by atypical face scan-
ning?’), in the present study we decided to investigate the face-scanning patterns of infants and
toddlers with different neurodevelopmental disorders (Down syndrome [DS], fragile X syn-
drome [FXS], Williams syndrome [WS]; see Table 1). These particular disorders were selected

Table 1. A brief description of three neurodevelopmental disorders.

Group Description References

Down syndrome
(DS)

The most common chromosome abnormality, DS is caused by the
trisomy of chromosome 21. It is characterised by mild to moderate
intellectual disability, decelerated maturation (neoteny), and a number
of other physical, cognitive, and behavioural atypicalities, including
poor verbal working memory and language delay.

[43–44]

Fragile X syndrome
(FXS)

The most common form of inherited intellectual disability in males,
FXS is caused by an expansion of the unstable CGG repeat within
the FMR1 gene. Affected individuals often present with an attentional
deficit, anxiety, gaze aversion, and language delay.

[45–46]

Williams syndrome
(WS)

A rare genetic disorder, caused by a hemizygotic microdeletion of
approximately 1.6 Mb containing ~28 genes on chromosome 7
(7q11.23). WS is characterized by an uneven cognitive profile with
particularly weak visuo-spatial construction abilities. Affected
individuals are often hyper-social and attracted to faces. Although
language ability is a relative strength in later development, they
present with language delay in early development.

[47–48]

doi:10.1371/journal.pone.0139319.t001
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because their pathology (aetiology, pathogenesis, morphologic changes, clinical manifesta-
tions) is well defined; other disorders, e.g., autism, are multifactorial syndromes, with many
causes, many subtypes, and no clear unifying mechanisms at either the molecular, cellular, or
systems level. Our aim was to ascertain whether face-scanning patterns relate to language abil-
ity–and if so, how they relate to it.

We presented participants with two talking faces (one on each side of a screen) and a sound
(/ga/). One face (the congruent face) mouthed the syllable that the participants could hear (/ga/
), while the other face (the incongruent face) mouthed a different syllable (/ba/) from the one
they could hear (/ga/). If mouth gaze does indeed play a role in extracting visual information
that facilitates understanding of unfamiliar or confusing (auditory) speech, then we should
expect that the children who focus their attention towards the mouth of the incongruent face
will have relatively larger vocabularies than those who direct their attention elsewhere.

Based on the results of Lewkowicz and Hansen-Tift [35] and others [21, 23, 26], we pre-
dicted that the 16-month-old TD controls would focus more on the incongruent than congru-
ent face and that those whose focus was more on the mouth region of the incongruent
speaking face would have a larger vocabulary. We also predicted no correlation between gaze
towards the eyes and vocabulary size. This is because, though eye gaze is important for cogni-
tive and social development, it is not relevant for children in this particular experimental con-
text. That is, although children may show a general bias towards the eyes, the eyes provide no
useful information in this context. So, unlike gaze to the mouth, there should be no relationship
between gaze to the eyes and vocabulary size. Finally, we hypothesized that infants and toddlers
with WS would fixate for longer on the eyes (as the previous literature suggests [38]) than the
other groups, and hence obtain less visual cue information from the mouth. In other words, we
predicted that they would not use visual mouth cues. Given the current state of the literature,
no a priori predictions could be made with respect to the DS and FXS groups. Although we
expected toddlers with FXS to avoid fixating on the eyes, it was impossible to predict whether
they would focus on the visual mouth cues or avoid the face altogether (see Table 2 for a sum-
mary of the predictions).

Methods

Participants
A total of 95 infants (around 15 months of age) and toddlers (around 30 months of age) from
the three neurodevelopmental disorders were tested: 22 infants and 21 toddlers with DS, 14
toddlers with FXS (too few infants being available for testing), and 12 infants and 26 toddlers
with WS. It was not possible to match infants with FXS on chronological age, because FXS is
often diagnosed later in development. The mean age of diagnosis is around 3 years for boys

Table 2. Summary of predictions.

Group Prediction Reason

Typical
development (TD)

TD children who more often fixate on the mouth in the incongruent face will
have larger vocabularies than those who fixate elsewhere.

Mouth movements provide visual information that
may facilitate understanding [14–18].

Down syndrome
(DS)

No a priori predictions were made.

Fragile X syndrome
(FXS)

No specific predictions were made. However, it was expected that the toddlers
with FXS would not fixate on the eyes of either face.

Gaze aversion is a characteristic of FXS [42].

Williams syndrome
(WS)

Children with WS will fixate on the eyes of both faces. They will make few
fixations to the mouth of either face, and thus no relationship between mouth
gaze and vocabulary will be detected.

Individuals with WS are drawn to eyes [38].

doi:10.1371/journal.pone.0139319.t002
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with FXS and 3.5 years for girls with FXS [49]. The participants had been clinically diagnosed
and/or genetically tested respectively for full trisomy 21, mutation of the FMR1 gene, or dele-
tion of the ELN gene. Data collected from these children were compared with data from 25 typ-
ically developing (TD) controls. Data from these controls were made available through the
British Autism Study of Infant Siblings (BASIS, www.basisnetwork.org; NHS NRES London
REC 08/H0718/76) who had been tested with the same materials and procedure. These TD
controls did not have a sibling with autism. We did not include data from children at risk of
developing autism. For all participants included in the present study, we verified that the pri-
mary language spoken in the home was English, even though a few of the children were
exposed to more than one language. The race and ethnicity of the participants reflected the
race and ethnicity of the general population. For instance, in each group the majority of partici-
pants (over 75%) were “White” or “White British”, while fewer than 10% were “non-White”
and fewer than 15% were “British Mixed”.

Because children with DS, FXS, or WS have a mental age (MA) of approximately half their
chronological age (CA), data from the TD control group were compared with data fromMA-
matched groups as well as CA-matched groups. Participants’mental ages were obtained for the
purpose of comparison, using the Mullen Scales of Infant Learning (MSEL [50]). Data from
one participant with WS were excluded from all analyses, because the 37-month-old had a (rel-
atively) high MA (31.25 months) that was 2.76 standard deviations (SD) above the group
mean.

Table 3 displays mean CA for each CA-matched group (TD controls, DS infants,WS
infants). A one-way ANOVA shows that the CA-matched groups did not significantly differ
on CA, F2,56 = 1.60, p = .212. Because the distribution of CA data in the WS and TD control
groups looked slightly bimodal, an Independent-samples Kruskal-Wallis test was also carried
out to confirm the results of the ANOVA. This non-parametric test also yielded no significant
difference between the groups on CA, H(2) = 1.32, p = .516.

MA data were normally distributed. A one-way ANOVA revealed that MA did not differ
significantly across the MA-matched groups (TD controls, DS toddlers, FXS toddlers,WS tod-
dlers), F3,80 = 0.32, p = .809 (Table 3).

Ethics Statement
The study was explained to participants’ caregivers beforehand, and written consent from
them on behalf of their infants/toddlers was obtained. All experimental procedures were in
accordance with the Declaration of Helsinki (www.wma.net/en/30publications/10policies/b3/),

Table 3. Mean chronological age (CA) andmental age (MA) for each group.

Group N CA in months (SD) MA in months (SD)

TD controls 25 15.48 (0.82) 16.60 (2.50)

DS infantsa 22 16.23 (1.81) 8.46 (2.45)

WS infantsa 12 16.13 (2.00) 8.71 (1.89)

DS toddlersb 21 28.83 (6.86) 15.86 (4.52)

FXS toddlersb 14 34.39 (8.32) 15.34 (4.42)

WS toddlersb 25c 30.14 (8.23) 16.11 (4.53)

a These two groups were CA-matched to the TD control group
b These three groups were MA-matched to the TD control group
c This table does not include the participant who was excluded from the analyses for having a relatively

high MA (see main text).

doi:10.1371/journal.pone.0139319.t003
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and were approved by the ethics committees of the Department of Psychological Sciences
(Birkbeck, University of London), and the National Research Ethics Service (UK Health
Research Authority).

Design
The design was adapted from [14] and [51]. Two adult female faces, with moving lips, were
presented side-by-side on a screen (Fig 1), with loudspeakers placed behind it. There were two
trials. In each trial, the participants were presented with two talking faces (one on each side of
the screen) and a sound. In one trial, the left-hand face mouthed the syllable /ba/ and the right-
hand face mouthed the syllable /ga/, while the sound /ga/ was simultaneously heard. In the
other trial, the left-hand face mouthed the syllable /ga/ and the right-hand face mouthed the
syllable /ba/, while the sound /ga/ was heard throughout. Thus, in each trial, one speaking face
was congruent (i.e., the visual stimulus matched the auditory stimulus) and the other speaking

Fig 1. An example of the visual stimuli used in the experiment, including the positioning and sizes in visual angle of the Areas-Of-Interest (eyes,
face, andmouth).

doi:10.1371/journal.pone.0139319.g001
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face was incongruent (i.e., there was a mismatch between the visual stimulus and the auditory
stimulus). The two trials (i.e., the position of the faces) were counterbalanced. There were two
other conditions, in which the sound /ba/ (rather than /ga/) was heard. Thus, all participants
took part in four counterbalanced conditions in total. However, the visual /ga/ and the auditory
/ba/ produce an illusory percept (the McGurk effect) that will be reported elsewhere.

Materials
The same stimuli were used as in Kushnerenko et al. ([14]; see also [51–52]). The stimuli con-
sisted of two 12-second video clips of two speaking faces, side-by-side, of the same female
native English speaker articulating either the /ba/ or /ga/ syllable against a black background
(see Fig 1 for an example of the visual stimuli, including the positioning and sizes in visual
angle of the Areas-of-Interest). In one video clip, the left-hand face articulated the /ba/ syllable,
while the right-hand face articulated the /ga/ syllable. In the other video clip, the left-hand face
articulated the /ga/ syllable, while the right-hand face articulated the /ba/ syllable. In both
video clips, the sound /ga/ was played. The faces were approximately life size. The video clips
and stereo soundtracks were digitised at a rate of 25 frames per second and 44.1 kHz with
16-bit resolution.

Each 12 s video clip started with lips fully closed, with the face being silent for the first nine
frames (360 ms). The subsequent voiced section lasted for seven frames, followed by three
frames of the mouth closing. Thus, sound onset began 360 ms after the onset of the two visual
face stimuli, and the voiced section lasted for 280 ms. The mouth opening for the visual /ga/
stimulus started about 260 ms prior to sound onset. For the visual /ba/, it started simulta-
neously with sound onset, with the lips pressing together around 280 ms prior to sound onset.
Total duration of the stimulus (i.e., one mouth movement and a simultaneous sound) was 760
ms, and stimulus onset asynchrony (SOA) was 760 ms, with each video clip (15 repetitions of
mouth movements and a simultaneous sound) being 12 s long.

In other words, there were two video clips (two conditions). Each video clip lasted 12 sec-
onds. Each video clip included 15 repetitions of mouth movements and a simultaneous sound
(/ga/). Each repetition (which included the opening and closing of the mouth) lasted for 760
ms. Each repetition included the sound (/ga/), which lasted for 280 ms. Incongruent face sti-
muli were created by dubbing the auditory /ga/ onto the visual /ba/. The consonantal burst in
the audio file was aligned with the consonantal burst in the video file.

A Tobii T120 remote eye tracker (Tobii Technology AB) was used to capture moment-to-
moment point of gaze at a sampling rate of 120 Hz, with measurement accuracy of about 0.5°.
The visual stimuli were presented on a 34 x 27 cm TFT liquid crystal display monitor, with a
resolution of 1280 x 1024 pixels and a response rate of 4 ms. The tracking equipment and stim-
ulus presentation were controlled using Tobii Studio 2.1.14. A camera mounted directly above
the horizontal midpoint of the screen was used to monitor and record infant behaviour. Audi-
tory stimuli were delivered via two speakers positioned behind the display monitor and facing
the participant.

Measuring vocabulary levels. The MacArthur-Bates Communicative Developmental
Inventory (CDI [53]) was used to assess language in the infants and toddlers. The CDI is a stan-
dardised parent report measure of vocabulary size (comprehension and production). It comes
in two forms: Gestures and words andWords and sentences. The CDI Gestures and words
scale covers the period from 8 to 16 months; the CDIWords and sentences scale from 16 to
30 months.

In the current study, parents were given the CDI Gestures and words scale. Although the
chronological age of some of our participants was above that of the ceiling (16 months) of this
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younger scale of the CDI, language delay is common among those with neurodevelopmental
disorders and, indeed, no atypical participant in our study was at ceiling. The word list consists
of 396 words in 19 semantic categories. For each word, the questionnaire measures whether the
child only understands the word or whether the child both understands and produces the
word.

For the analyses, raw scores (i.e., the number of words the child understands and the num-
ber of words the child both understands and says) rather than standardized/normalized scores
were used. This is because tests such as the CDI are only standardized for TD children and
thus lack sensitivity at the extreme ends of the normal distribution. Yet infants and toddlers
with neurodevelopmental disorders often score below the lowest percentile provided for the
norms included in the CDI and similar tests.

Procedure
The questionnaire was posted to parents prior to the day of testing and completed within two
weeks of their visit to the laboratory (where the experimental task was carried out). The parents
were instructed to mark down which words their child could understand and which words
their child could both understand and say.

For the experimental task, the same procedure was used as in [14] and [52], i.e., infants sat
on their parent’s lap, in a dimly lit featureless room, facing the stimulus-presentation screen,
with their eyes at a distance of approximately 60 cm from the screen. The experimenter sat
behind a curtain and observed the infant, using Tobii Studio LiveViewer via a camera that was
positioned centrally above the screen. The infants’ eye movements were recorded using Tobii
Studio 2.1.14. Caregivers were asked to close their eyes during the experiment. Calibration was
carried out using 5 points: one in each corner of the screen and one in the centre of the screen.
Before each trial, a colour animation and interesting sounds were played to attract the infant’s
attention to the centre of the screen. Once the child’s attention was focused on the screen cen-
tre, the attention grabber was terminated and the trial was started simultaneously. The total
duration of the experimental procedure did not exceed 10 minutes.

Analysis
For each participant, the quality of recording was measured as a percentage (the number of eye
tracking samples that were correctly identified, divided by the number of attempts, so 50%
means that one eye was found for the full recording or that both eyes were found for half the
time. The eyes cannot be detected when a participant is looking away from the screen; this will
result in a lower percentage). The quality of recording was at least 25% in all participants. The
quality of recordings did not significantly differ across CA- or MA-matched groups, H(2) =
4.76, p = .093, F3,81 = 0.90, p = .448, respectively (see Table 4). A non-parametric test was used
for the CA-comparison because the data in the WS infant group had a continuous (rather than
a normal) distribution.

Areas-Of-Interest (AOIs) were delineated around the eyes and mouth (Fig 1). These were
defined before data were collected [51–52]. Duration of fixations and fixation count were cal-
culated off-line using Tobii Studio and Tobii fixation filter (Tobii Inc.). Duration of fixations is
the total duration (in seconds) of all fixations within an AOI. We decided to look also at fixa-
tion count, because there is evidence that it is positively correlated with at least some aspects of
language acquisition [54]. Fixation count is the number of times the participant fixated on an
AOI. It is a useful measure of attention-holding mechanisms [55–58], because it tells us some-
thing about how a stimulusmaintains infants’ attention when other (conflicting) stimuli are
also vying to capture attention [56].

Face Scanning and Language in Three Neurodevelopmental Syndromes
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All data were tested for normality. Data values that were above or below 2 standard devia-
tions from the group mean were judged a priori to be outliers, and hence removed from the
analysis (unless the data were transformed–see below). This decision was based on the litera-
ture [59]. If the data were non-normal (i.e., if ZSkewness > ±2 and Kolmogorov-Smirnov p<
.05), then they were transformed (log 10, reflected log 10, or arcsine, as appropriate). If the
transformed data were non-normal (e.g., bimodal), then the untransformed data were analysed
using the appropriate non-parametric test (e.g., Mann-Whitney).

Results
First, we decided to characterise looking patterns across the different groups. To do so, we ana-
lysed where on the face each group was looking. Specifically, for each AOI (eyes/mouth, con-
gruent/incongruent) we analysed duration and number of fixations.

CA-matched infant comparison (N.B. no infants with FXS participated)
Looking patterns–duration of fixations. Four fixation duration measures were taken:

eyes in the congruent face, eyes in the incongruent face,mouth in the congruent face, andmouth
in the incongruent face. These measures were re-coded as percentages, i.e., fixation durations to
the eyes/mouth AOIs as a percentage of fixation durations to the face AOI, for each group (TD,
DS, WS) and face (congruent, incongruent) (see Fig 2).

Because some of the data were positively skewed while some were negatively skewed (ZSkew-
ness > ±2), nonparametric tests were carried out. Friedman’s ANOVAs revealed significant dif-
ferences between the four measures in each of the three groups, χ2(3) = 54.04, p< .001 (TD),
χ2(3) = 42.61, p< .001 (DS), χ2(3) = 17.00, p = .001 (WS). Wilcoxon tests were used to follow
up this finding. Bonferroni corrections were applied. Therefore, all effects are reported at a .008
level of significance. TD controls fixated significantly more on the mouth (relative to the entire
face) than on the eyes (relative to the entire face) (all, p< .001, r>-.76). No significant differ-
ences were found between the mouths in both faces, nor between the eyes in both faces (both, p
> .906). The same pattern emerged in DS (i.e., for all comparisons p< .001, r>-.59, except for
comparisons between both mouth AOIs [p = .391] and between both eyes AOIs [p = .540]).
However, this pattern may be weaker in WS, because although the infants with WS fixated less
on the eyes in the incongruent face than on the mouth in either face (both, p = .001, r = -.76),
comparisons between the eyes in the congruent face and the mouth AOIs did not survive the
Bonferroni correction (both, p = .030, r = -.48).

Furthermore, Kruskal-Wallis tests revealed significant differences between the groups in fix-
ation percentages to the eyes in the congruent face (H(2) = 12.71, p = .002, but not in the

Table 4. Quality of data for each group.

Group N Mean (%) SD

TD controls 25 82.2 12.7

DS infantsa 22 80.1 14.3

WS infantsa 12 63.4 25.1

DS toddlersb 21 75.3 13.1

FXS toddlersb 14 80.1 12.8

WS toddlersb 25c 77.4 19.4

a These two groups were CA-matched to the TD control group
b These three groups were MA-matched to the TD control group

doi:10.1371/journal.pone.0139319.t004
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incongruent face p = .066) and to the mouth in both the Congruent and Incongruent faces
(H(2) = 12.02, p = .002,H(2) = 15.73, p< .001, respectively). These findings were followed up
with pairwise comparisons. Bonferroni corrections were applied. Therefore, all effects are
reported at a .017 level of significance. The TD controls looked significantly less at the eyes in
the congruent face than the infants with DS, Z = -3.56, p< .001, r = .53. The TD controls also
looked more at the mouth in the congruent and incongruent faces than the infants with DS
(Z = 2.42, p = .016, r = -.39, Z = 3.36, p = .001, r = -.52, respectively) or WS (Z = 3.24, p = .001,
r = -.49, Z = 3.30, p = .001, r = -.52, respectively).

In other words, TD controls fixated for longer at the mouth AOIs than infants with both
forms of neurodevelopmental disabilities.

Looking patterns–number of fixations. To further characterise looking patterns in the
three groups, we analysed number of fixations: eyes in the congruent face, eyes in the incongru-
ent face,mouth in the congruent face, andmouth in the incongruent face. Fig 3 shows number
of fixations to eyes/mouth AOIs for each group (TD, DS, WS) and face (congruent,
incongruent).

Because some of the data were positively skewed (even when transformed, ZSkewness > ±2),
nonparametric tests were carried out on the (untransformed) data. Friedman’s ANOVAs
revealed significant differences between the four measures in each of the three groups, χ2(3) =
50.88, p< .001 (TD), χ2(3) = 24.21, p< .001 (DS), χ2(3) = 17.06, p = .001 (WS). Wilcoxon tests
were used to follow up this finding. Bonferroni corrections were applied. Therefore, all effects
are reported at a .008 level of significance. TD controls made significantly more fixations to the
mouths than to the eyes (all, p< .001, r>-.59). No significant differences were found between
the mouths in both faces, or between the eyes in both faces (both, p> .239). The same pattern
was found in DS andWS (i.e., for all comparisons p< .01, r>-.77, except for comparisons
between both mouth AOIs [both, p> .868] and between both eyes AOIs [both, p> .583]).

Furthermore, Kruskal-Wallis Tests revealed significant differences between the groups in
number of fixations to the eyes in both the Congruent and Incongruent face (H(2) = 10.44, p =

Fig 2. Fixation durations to eyes/mouth AOIs as a percentage of fixation durations to the face AOI, for
each group (TD, DS, WS) and face (congruent, incongruent). Eyes-Con = eyes AOI in the congruent face.
Eyes-Incong = eyes AOI in the incongruent face. Mouth-Con = mouth AOI in the congruent face. Mouth-
Incong = mouth AOI in the incongruent face. TD controls fixated for longer at the mouth AOIs than infants with
DS or WS (all, p < .01). Error bars represent one standard error of the mean.

doi:10.1371/journal.pone.0139319.g002
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.005, H(2) = 7.20, p = .027, respectively), and to the mouth in both the Congruent and Incon-
gruent face (H(2) = 6.79, p = .034, H(2) = 10.78, p = .005, respectively). These findings were fol-
lowed up using pairwise comparisons. Bonferroni corrections were applied. Therefore, all
effects are reported at a .017 level of significance. The TD controls made significantly fewer fix-
ations at the eyes in the congruent and incongruent faces than the infants with DS, Z = -3.22, p
= .001, Z = -2.60, p = .009. The TD controls also made more fixations at the mouth AOIs in the
congruent and incongruent faces than the infants with WS (Z = 2.47, p = .014, Z = 2.81, p =
.005, respectively). Infants with DS made more fixations to the mouth than infants with WS in
the incongruent face (Z = 3.13, p = .002) but not in the congruent face Z = 2.24, p = .025 [this
did not survive the Bonferroni correction) (see Fig 3).

In other words, infants with WS made fewer fixations to the mouth than both TD controls
and infants with DS.

Predicting language. Analyses were carried out to ascertain whether the group differences
in visual scanning had any relation with receptive or expressive language. Our sample was too
small for us to run statistical tests such as ‘multiple regression’. However, our N was large
enough for simple regressions. Because we predicted that looking at themouth in the incongru-
ent face would correlate with greater language ability, and because the TD infants looked more
at the mouth than the eyes, we decided to ascertain whether it predicts language ability.

In TD controls, fixation duration to the mouth in the incongruent face (as a percentage of
fixation durations to the entire incongruent face) predicted expressive language (B = 0.57, SE B
= 0.26, β = .46, p = .038 [which explains 21% of the variance]) but not receptive language (p =
.107). Conversely, number of fixations to the mouth in the incongruent face predicted receptive
language (B = 8.68, SE B = 4.06, β = .42, p = .044, [17% of the variance]) but not expressive lan-
guage (p = .850) in TD controls.

However, neither fixation duration nor number of fixations predicted receptive/expressive
language in the two atypically developing groups (all, p = ns). But because these groups did not
focus attention on the mouth AOIs to the same extent as the TD controls, and because they
made a lot of fixations to the eyes, we decided to see whether fixations to the eyes predict

Fig 3. Number of fixations to eyes/mouth AOIs for each group (TD, DS, WS) and face (congruent,
incongruent). Eyes-Con = eyes AOI in the congruent face. Eyes-Incong = eyes AOI in the incongruent face.
Mouth-Con = mouth AOI in the congruent face. Mouth-Incong = mouth AOI in the incongruent face. Infants
with WSmade fewer fixations at the mouth AOIs than infants with DS or TD controls. Error bars represent one
standard error of the mean.

doi:10.1371/journal.pone.0139319.g003
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language ability in these children. The results were surprising. Although fixation duration to
the eyes in the incongruent face (as a percentage of fixation durations to the entire incongruent
face) did not predict language ability in any group (all, p = ns), number of fixations to the eyes
in the incongruent face predicted receptive language in infants with WS (B = -17.36, SE B =
5.53, β = -.79, p = .020 [which explains 62% of the variance]) but not in DS or TD controls
(both, p = ns).

Nevertheless, number of fixations to the eyes did not predict expressive language in any of
the groups (all, p = ns). Intrigued, we delved deeper and found that the measure does, however,
predict both receptive and expressive language in WS (B = -1.83, SE B = 0.70, β = -.64, p = .026
[41% of the variance], B = -2.69, SE B = 0.95, β = -.67, p = .018 [44% of the variance], respec-
tively), when language was assessed by the experimenters using the Mullen, a live test, rather
than the CDI, a parental questionnaire. We reanalysed fixation duration percentage and found
that it also predicted receptive and expressive language in WS as evaluated using the Mullen,
B = -0.11, SE B = 0.05, β = -.63, p = .038 (40% of the variance), B = -0.20, SE B = 0.06, β = -.77,
p = .006 (59% of the variance), respectively. This was not observed in the other two groups [all
p = ns].)

Looking at the eyes in the incongruent face was thus important for the infants with WS,
whereas it was the mouth region that was important for the TD controls. But did it matter
what face (incongruent, congruent) the eyes or mouth were in? To explore this, we decided
first to compare fixation counts (FC) at the eyes AOIs (i.e., FCEYE = incongruent eyes/[incon-
gruent eyes + congruent eyes]), and then FC at the mouth AOIs (FCMOUTH = incongruent
mouth/[incongruent mouth + congruent mouth]). Regression analyses were again used to
ascertain whether FCEYES or FCMOUTH predict language ability in these children (for these final
sets of analyses, we decided to focus on receptive language which, as mentioned earlier, was
found to be dependent on fixation count in the TD controls).

Eyes. FCEYES did not predict receptive language in any of the groups (all p> .05), although
there was a trend in the WS group, B = -31.76, SE B = 13.45, β = -.73 (R2 = .53, p = .065; see
Fig 4).

Mouth. FCMOUTH was a significant predictor of receptive language and accounted for 20%
of its variability in the TD control group, B = 235.23, SE B = 105.04, β = .45 (R2 = .20, p = .037)
(see Fig 5). This indicates that the more fixations to the mouth in the Incongruent face, relative
to the mouths in both faces, the greater is the child’s receptive vocabulary (for every .1, the
infant understands an extra 24 words on average; see Fig 6 for an example TD participant’s
gaze pattern). By contrast, FCMOUTH did not predict receptive language in infants in the two
atypical groups (both, p> .10).

MA-matched toddler comparison (this time including also a group with
FXS)

Looking patterns–duration of fixations. Four fixation duration measures were analysed:
eyes in the congruent face, eyes in the incongruent face, the mouth in the congruent face, and the
mouth AOI in the incongruent face. These measures were re-coded as percentages. Fig 7 shows
fixation durations to eyes/mouth AOIs as a percentage of fixation durations to the face AOI,
for each group (TD, DS, FXS, WS) and face (congruent, incongruent).

Because some of the data were positively skewed while some were negatively skewed
(ZSkewness> ±2), nonparametric tests were carried out. Friedman’s ANOVAs revealed signifi-
cant differences between the four measures in each of the four groups, χ2(3) = 54.04, p< .001
(TD), χ2(3) = 25.95, p< .001 (DS), χ2(3) = 15.19, p = .002 (FXS), χ2(3) = 52.05, p< .001 (WS).
Wilcoxon tests were used to follow up this finding. Bonferroni corrections were applied.
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Therefore, all effects are reported at a .008 level of significance. TD controls fixated significantly
more on the mouth (relative to the entire face) than on the eyes (relative to the entire face) (all,
p< .001, r>-.76). No significant differences were found between the mouths in both faces, nor
between the eyes in both faces (both, p> .906). The same pattern emerged in DS andWS (i.e.,
for all comparisons p< .005, r>-.46, except for comparisons between both mouth AOIs [both,
p> .378] and between both eyes AOIs [both, p> .705]). However, this pattern may be weaker in
FXS, because although the toddlers with FXS fixated less on the eyes in the congruent face than
on the mouth in either face (both, p< .01, r = -.55), and less on the eyes in the incongruent face
than the mouth in the congruent face (p = .008, r = -.52), the comparison between the eyes and
the mouth in the incongruent face again did not survive the Bonferroni correction (p = .012).

Furthermore, Kruskal-Wallis tests revealed significant differences between the groups in fix-
ation percentages to the eyes in the Congruent and Incongruent faces (H(3) = 13.02, p = .005,
H(3) = 16.03, p = .001, respectively) and to the mouth in both the Congruent and Incongruent
faces (H(3) = 16.18, p = .001, H(3) = 17.08, p = .001, respectively). These findings were followed
up with pairwise comparisons. Bonferroni corrections were applied. Therefore, all effects are
reported at a .017 level of significance. The TD controls looked significantly more at the mouth
AOIs than toddlers with DS or FXS in both incongruent and congruent faces (all, Z> 3.00,

Fig 4. Proportion of fixations on the eyes of the Incongruent face relative to the eyes of both Incongruent and Congruent faces, organised by
Group (TD control, DS, WS).

doi:10.1371/journal.pone.0139319.g004
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p< .017). The toddlers with WS looked less at the eyes in the congruent face than toddlers
with DS (Z = 2.89, p = .004) and less at the eyes in the incongruent face than both toddlers with
DS or FXS (both, Z> 3.10, p< .003).

Looking patterns–number of fixations. We examined four ‘number of fixations’mea-
sures: eyes in the congruent face, eyes in the incongruent face,mouth in the congruent face, and
mouth in the incongruent face. Fig 8 shows number of fixations to eyes/mouth for each group
(TD, DS, FXS, WS) and face (congruent, incongruent).

Because some of the data were positively skewed (even when transformed, ZSkewness > ±2),
nonparametric tests were carried out on the (untransformed) data. Friedman’s ANOVAs
revealed significant differences between the four measures in some—but not all—groups,
χ2(3) = 50.88, p< .001 (TD), χ2(3) = 16.86, p = .001 (DS), χ2(3) = 4.15, p = .246 (FXS), χ2(3) =
49.49, p< .001 (WS). Wilcoxon tests were then used to follow up this finding. Bonferroni cor-
rections were applied. Therefore, all effects are reported at a .008 level of significance. TD con-
trols made significantly more fixations to the mouths than to the eyes (all, p< .001, r>-.59).
No significant differences were found between the mouths in both faces, nor between the eyes
in both faces (both, p> .239). The same pattern emerged in WS (i.e., for all comparisons

Fig 5. Proportion of fixations on the mouth of the Incongruent face relative to the mouths of both Incongruent and Congruent faces, organised by
Group (TD control, DS, WS).

doi:10.1371/journal.pone.0139319.g005

Face Scanning and Language in Three Neurodevelopmental Syndromes

PLOS ONE | DOI:10.1371/journal.pone.0139319 October 1, 2015 14 / 26



p< .001, r>-.66, except for comparisons between both mouth AOIs [p = .521] and between
both eyes AOIs [p = .770]). Toddlers with DS made significantly more fixations at the mouth
in the congruent face than at the eyes in either face (both, p< .005, r>-.53), but no other dif-
ferences survived the Bonferroni correction.

Furthermore, Kruskal-Wallis Tests revealed significant differences between the groups in
number of fixations to the eyes in both the Congruent and Incongruent face (H(3) = 13.88, p =
.003, H(3) = 18.19, p< .001, respectively), and to the mouth in the Congruent, but not the
Incongruent, face (H(3) = 11.75, p = .008, H(3) = 7.56, p = .056, respectively). These findings
were then followed up with pairwise comparisons. Bonferroni corrections were applied. There-
fore, all effects are reported at a .017 level of significance. The TD controls made significantly
more fixations at the mouth in the congruent face than the toddlers with FXS, Z = 3.37, p =
.001. The toddlers with DS made more fixations to the eyes than the toddlers with WS and TD
controls (both, Z> 2.73, p< .007) in the congruent face. The toddlers with DS also made

Fig 6. The face-scanning patterns of two typically developing (TD) children: the blue path represents the scanning pattern of a child with a
receptive vocabulary of 213 words; the red path represents the scanning pattern of a child with a receptive vocabulary of 8 words. TD infants who
focused on the incongruent mouth had a larger vocabulary than those who focused on the congruent mouth. The incongruent mouth is the one on the left.

doi:10.1371/journal.pone.0139319.g006
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more fixations to the eyes than toddlers with WS in the incongruent face (Z = 3.15, p = .002).
Finally toddlers with FXS made more fixations to the eyes in the incongruent face than toddlers
with WS and TD controls (both, Z> 2.81, p< .006).

Predicting language. As with the infant groups, neither fixation duration nor number of
fixations (i.e., to the mouth in the incongruent face) predicted receptive/expressive language in
the three atypically developing toddler groups (all, p = ns).

Nevertheless, because these groups did not focus their attention on the mouth AOIs to the
same extent as the TD controls, and because they made a lot of fixations to the eyes, we decided
to see whether fixation to the eyes predicted language ability.

Fig 7. Fixation durations to eyes/mouth AOIs as a percentage of fixation durations to the face AOI, for
each group (TD, DS, FXS, WS) and face (congruent, incongruent). Eyes-Con = eyes AOI in the congruent
face. Eyes-Incon = eyes AOI in the incongruent face. Mouth-Con = mouth AOI in the congruent face. Mouth-
Incon = mouth AOI in the incongruent face. Error bars represent one standard error of the mean.

doi:10.1371/journal.pone.0139319.g007

Fig 8. Number of fixations to eyes/mouth AOIs for each group (TD, DS, WS) and face (congruent,
incongruent). Eyes-Con = eyes AOI in the congruent face. Eyes-Incon = eyes AOI in the incongruent face.
Mouth-Con = mouth AOI in the congruent face. Mouth-Incon = mouth AOI in the incongruent face. Error bars
represent one standard error of the mean.

doi:10.1371/journal.pone.0139319.g008
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Fixation duration to the eyes in the incongruent face (as a percentage of fixation durations
to the entire incongruent face) predicted receptive language in the FXS andWS groups ((B =
-2.51, SE B = 0.72, β = -.82, p = .013 [which explains 67% of the variance]), B = 6.89, SE B =
3.16, β = .47, p = .044 [which explains 22% of the variance], respectively). Fixation duration to
the eyes in the incongruent face also predicted expressive language in WS (B = 6.81, SE B =
2.20, β = .61, p = .007 [which explains 38% of the variance]).).

Furthermore, number of fixations to the eyes in the incongruent face predicted receptive
language in the FXS group (B = -23.03, SE B = 6.48, β = -.80, p = .009 [which explains 64% of
the variance]) and expressive language in the WS group (B = 35.96, SE B = 13.51, β = .54, p =
.016 [which explains 29% of the variance]).

Again, to explore whether it was important which face (congruent, incongruent) the tod-
dlers focused on, we ran regression analyses to ascertain whether FCEYES or FCMOUTH predict
receptive language.

Eyes. FCEYES was a significant predictor of receptive language and accounted for 61% of
its variability in the FXS group, B = 190.49, SE B = 62.85, β = .78 (R2 = .61, p = .023), and 38%
in the WS group, B = 126.37, SE B = 41.69, β = .62 (R2 = .38, p = .008) (see Fig 9). FCEYE did
not predict receptive language in the TD control or DS groups, B = 9.72, SE B = 32.98, β = .07

Fig 9. Proportion of fixations on the eyes of the Incongruent face relative to the eyes of both Incongruent and Congruent faces, organised by
Group (TD control, DS, FXS, WS).

doi:10.1371/journal.pone.0139319.g009
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(p = .772), B = 58.73, SE B = 97.42, β = .20 (p = .562), respectively. This suggests that the more
fixations to the eyes in the Incongruent face, relative to the eyes in both faces, the greater is the
child’s receptive vocabulary (for every .1, the toddler with FXS understands an extra 19 words
on average, while the toddler with WS understands an extra 13 words on average [see Figs 10,
11 and 12 for example of gaze patterns in participants with DS, FXS, and WS]).

Mouth. FCMOUTH was a significant predictor of receptive language in toddlers and
accounted for 20% of its variability in the TD control group, B = 235.23, SE B = 105.04, β = .45
(R2 = .20, p = .037; Fig 13). This indicates that the more fixations to the mouth in the Incongru-
ent face, relative to the mouths in both faces, the greater is the child’s receptive vocabulary (for
every .1, the TD child understands an extra 24 words on average). FCMOUTH did not predict
receptive language in any of the atypical groups (all, p> .10).

Fig 10. The face-scanning patterns of two toddlers with Down syndrome (DS): the blue path represents the scanning pattern of a child with a
receptive vocabulary of 115 words; the red path represents the scanning pattern of a child with a receptive vocabulary of 55 words.No relationship
was found in DS between face scanning and language ability. The incongruent face is the one on the left.

doi:10.1371/journal.pone.0139319.g010
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Why does greater attention to the eyes positively correlate with language
ability in FXS andWS, but not in DS or TD?
One reason why looking at the eyes is correlated with language ability in children with FXS and
WS is that language ability is correlated with looking at the face more generally in these chil-
dren. To test this hypothesis, we carried out further analyses to ascertain whether any of the
following predicts language ability: (1) proportion of target looking; i.e., fixation duration to
the incongruent face as a proportion of fixation duration to both incongruent and congruent
faces), (2) total looking time at both the incongruent and congruent faces, (3) total number of
fixations to both incongruent and congruent faces. We would expect proportion of target look-
ing (which demonstrates an ability to discriminate between stimuli) to be correlated with
greater receptive/expressive vocabulary. We would also expect longer looking time or more fix-
ations to the faces to correlate with language ability.

Fig 11. The face-scanning patterns of two toddlers with fragile X syndrome (FXS): the blue path represents the scanning pattern of a child with a
receptive vocabulary of 176 words; the red path represents the scanning pattern of a child with a receptive vocabulary of 5 words. Toddlers with
FXS who focused more on the eyes in the incongruent display had a larger vocabulary than those who focused more on the eyes in the congruent display.
The eyes in the incongruent face are on the left.

doi:10.1371/journal.pone.0139319.g011
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All data (for both CA- and MA-comparisons) were normally distributed (Kolmogorov-
Smirnov test: all, p> .05; Zskewness < 2). For the CA-comparison, while proportion of target
looking did not significantly differ across groups (F2,54 = 0.22, p = .808), total duration and
total number of fixations significantly varied across groups (F2,55 = 12.29, p< .001, F2,53 =
24.53, p< .001, respectively). Contrary to expectations, infants with WS looked significantly
less at the faces than infants with DS and TD controls (both, p< .005, Bonferroni corrected).
Perhaps participants with WS are more likely to turn away from the computer face stimuli in
favour of their caregiver’s face. Infants with DS made significantly more fixations than infants
with WS and TD controls (both, p< .001, Bonferroni corrected). Total duration was a signifi-
cant predictor of expressive language in DS (B = -0.48, SE B = 0.18, β = -.68, p = .030 [which
explains 47% of the variance]), but importantly, no variables predicted either receptive or
expressive language in any of the other groups (all, p = ns).

Fig 12. The face-scanning patterns of two toddlers with Williams syndrome: the blue path represents the scanning pattern of a child with a
receptive vocabulary of 246 words; the red path represents the scanning pattern of a child with a receptive vocabulary of 23 words. Toddlers with
WS who focused more on the eyes in the incongruent display had a larger vocabulary than those who focused more on the eyes in the congruent display.
The eyes in the incongruent face are on the left.

doi:10.1371/journal.pone.0139319.g012
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For the MA-comparison, proportion of target looking did not significantly differ across
groups (p = ns). However, total duration and total number of fixations to both faces did differ
across groups, F3,76 = 13.58, p< .001, F3,78 = 7.51, p< .001, respectively. Post hoc tests revealed
that the toddlers with DS looked longer at the faces and made more fixations than the other
groups (all, p< .005, Bonferroni-corrected). Crucially, none of the variables predicted receptive
or expressive language in any of the groups (all, p = ns).

In other words, general looking at faces was not predictive of language ability in FXS or WS,
but was in the DS group.

Discussion
The aim of the present study was to investigate the face scanning patterns of infants and tod-
dlers with different neurodevelopmental disorders, and to ascertain whether such patterns
relate to language ability in any of the groups. Specifically, we argued that if gaze to the mouth
plays an important role in extracting visual information that facilitates understanding of unfa-
miliar or confusing (auditory) speech, then children who focus their attention towards the
mouth of an incongruent talking face would have relatively larger vocabularies than those who

Fig 13. Proportion of fixations on the mouth of the Incongruent face relative to the mouths of both Incongruent and Congruent faces, organised by
Group (TD control, DS, FXS, WS).

doi:10.1371/journal.pone.0139319.g013
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direct their attention elsewhere. This is indeed what we found for the TD controls. The number
of times and duration a TD child looked at the mouth region of a speaking face that was incon-
gruent with the audible sound, the more likely it was that s/he had a relatively large receptive or
expressive vocabulary. This makes sense, because watching lip movements influences auditory
perception (e.g., phoneme discrimination [14–18, 60]), and auditory perception is an impor-
tant precursor to learning spoken language [61–62].

By contrast, no relationship was found between gaze to the mouth and language ability in
any of the three atypically developing groups. However, the number of times a toddler with
FXS or WS looked at the eyes of a speaking face that was incongruent with the audible sound,
the more likely it was that s/he had a relatively large receptive or expressive vocabulary. This is
an unexpected finding–in part because children with FXS present with social anxiety and shy-
ness that often result in aversion to eye contact [42]. It is not surprising that the participants
with FXS did look at the eyes AOI, though. Unlike children with autism spectrum disorder,
individuals with FXS are not often uninterested in social interactions; they avert their gaze only
because they are initially shy and anxious when meeting strangers [42]. In the present study,
the toddlers with FXS had no reason to avert their gaze–because we used video clips of a
speaker rather than live human interaction. We would still expect them to have developed a
mouth-gaze strategy—or rely solely on auditory information—to learn language. However, our
results suggest that toddlers with FXS, as well as those with WS, rely on visual input from the
eyes rather than from the mouths. It is important to note that at a distance of 60 cm, the infants
and toddlers in our study would be able to see the entire face in their periphery. Nevertheless,
these are unexpected findings. They may reflect a lack of developing expertise (see Introduc-
tion). From as early as 2 months of age [63–64], TD infants focus on the eyes. This helps them
to master joint attention, imitation, the reading of emotions, and so on. However, from around
8 months of age, a shift occurs whereby TD infants begin to look longer at the mouth [35]. We
speculate that this developmental shift may not occur in FXS or WS. It is possible that those
with a larger vocabulary and also FXS or WS may make a few important fixations on the
mouth but turn their attention to the eyes rather than the mouth of the Incongruent face. At
the very least, these data suggest that the children with FXS or WS are using a different learning
strategy from the one employed by TD infants.

With respect to the DS group, fixation count did not predict receptive vocabulary, which
raises the possibility that children with DS do not use precise audiovisual speech cues to boot-
strap language acquisition. Indeed, overall looking at the face in general (i.e., duration of fixa-
tions) predicted expressive language in DS. Note that many of the participants with DS are
being taught a signed language called Makaton. We speculate that early in development infants
with DS rely more on hand movements than facial movements to learn language. Further
investigation is needed to unravel this.

The strength of the current study is that it used an eye tracker to measure precisely how
many times TD infants and children with different neurodevelopmental disorders fixate on
two different areas of interest within the face (eyes, mouth), and that we identified interesting
associations between this measure and language ability. An eye tracker is more sensitive than
simple observation, and the stimuli were presented in a carefully controlled environment.
However, it was beyond the scope of this paradigm to establish a causal relationship between
visual scanning of faces and language development. Firstly, we studied matching of only a sin-
gle syllable (/ga/). Before firm conclusions can be drawn about face scanning and language,
participants need to be tested on other speech samples, including more naturalistic fluent
speech. Moreover, our participants could only visually explore, not interact with, the talking
faces. The children may behave differently in a more naturalistic (albeit less controlled)
environment.
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Nevertheless, our study provides evidence that visual scanning patterns are related to lan-
guage development. We have shown that TD children who use gaze to the mouth have greater
vocabularies than those who do not. Moreover, some children (namely, those with DS, FXS,
and WS), known to present with language delay, failed to use gaze to the mouth when process-
ing our stimuli. These findings raise important questions: Why do children with neurodevelop-
mental disorders not benefit from directing their visual attention to the mouth of a speaker?
Why do the children with FXS or WS who focus on the eyes of a speaker tend to have larger
vocabularies? Should interventions encourage infants with these neurodevelopmental disorders
to focus more on the face in general or specific parts of the face, and should this differ across
different syndromes? Is it important to know why children with neurodevelopmental disorder
do not focus on the mouth like TD children? Indeed, could this knowledge help clinicians to
design syndrome-specific interventions that improve language ability indirectly through meth-
ods that modify face-scanning behaviour?

In summary, our findings reveal an important association between face scanning and lan-
guage ability which points to intervention strategies for language delay outside language itself.
Furthermore, we demonstrated that different attentional processes underpin word learning
across the different groups. TD children with a relatively large vocabulary make more fixations
to the speaker’s mouth, while those with FXS or WS who also have a relatively large vocabulary
make more fixations to the eyes. By contrast, in children with DS fixation count to either the
eyes or the mouth failed to account for individual differences in language ability. But infants
with DS who spent more time looking at the overall face had larger vocabularies than those
who spent less time looking at the face. These findings indicate that different processes or strat-
egies are likely involved in language acquisition across these neurodevelopmental disorders, at
least at certain points in development, processes or strategies that future studies will need to
elucidate further. It may also be useful to ascertain whether training children with neurodeve-
lopmental disorders on precisely where to look for visual input would facilitate their under-
standing and learning of spoken language.
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