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ABSTRACT 

Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors 
such as optical design simplicity and stability. However, the image-based approach is computational intensive, and 
therefore, specialized high-performance computing architectures are required in applications utilizing the image-based 
approach. The development and testing of these high-performance computing architectures are essential to such 
missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and 
Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require 
numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a 
distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 
64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and 
performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and 
scientifically computationally complex problems. 

Keywords: Digital Signal Processors (DSP), Fast Fourier Transform (FFT), James Webb Space Telescope (JWST), 
Field Programmable Gate Arrays (FPGA). 

1. INTRODUCTION 

Future light-weighted and segmented primary mirror systems require active optical control to maintain mirror 
positioning and figure to within nanometer tolerances. An image-based wavefi-ont sensor offers a simple solution that 
differs from conventional wavefi-ont sensing approaches (e.g., Shack-Hartmann, shearing interferometry) in that 
complicated optical hardware is replaced by a computational approach where the science camera itself serves as the 
wavefront sensor. Although the image-based approach is simpler to implement in hardware, and thus preferred for 
space-optics deployment due to reduced risk of optical system failure, the image-based approach trades hardware for a 
software solution and is therefore computationally intensive. As a result, near real-time operation of the wavefront 
sensing system requires substantial floating-point performance in addition to high data transfer and communication 
rates. 

Phase-diverse phase-retrieval is an image-based wavefi-ont sensing method that utilizes point source images (or 
other known object) to recover optical phase information. A number of image-based phase-retrieval techniques have 
been developed that can be classified into one of two general categories: (a) iterative transform (ITA) [l, 21 or (b) 
parametric [3,4]. Fig. 1 depicts the mechanism of classical iterative transform phase-retrieval (termed “error reduction” 
in the earlier literature [5] ) ,  which operates by iteratively enforcing constraints between conjugate Fourier domains. 
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Fig. 1. Iterative transform phase-retrieval (3‘(-> denotes Fourier transform). 

Modifications to the original iterative transform approach have been based on the introduction of a defocus 
diversity function [6 ,  71 or on the input-output method [ 5 ] .  Various implementations of the focus-diverse iterative- 
transform method have appeared in [SI deviating slightly by utilizing a single wavelength and varying the placement 
and number of defocused image planes. Modifications to the parametric approach include minimizing alternative 
objective functions as well as implementing a variety of nonlinear optimization methods such as Levenburg-Marquardt 
191, simplex, and quasi-Newton techniques [IO]. 

Including the modifications to the iterative transform approach can be seen in Fig. 2. For each inner loop and 
for each image, a single iteration is made constraining between conjugate Fourier domains. Thus, a single iterations 
results in a two dimensional Fourier and Inverse Fourier Transforms; hence, the number of 2-D FFTs is the product of 
the number of diversity-defocus images, the number of outer iterations, the number of inner iterations, and then 2 (for 
the Fourier and Inverse Fourier Transform). 

The iterative-transform algorithm requires numerous iterations from the image plane to the pupil plane via the 
Fourier transform pair, see Fig. 1 and Fig. 2. Current desktop and server line general-purpose central processing units 
(CPU) have been optimized for performing multiple tasks and use principles of data locality to increase performance, 
yet for performing large 2-D FFT’s, performance dramatically decreases [l 1, 121. For example, a current general- 
purpose CPU can take several seconds for a double precision 2-D FFT of size 2048x2048. This is mainly due to the 
fact that the memory architecture is not optimized for such large data sets. To perform the numerous large 2-D FFT’s 
efficiently, several application specific architectures have been developed and are discussed further below. Many 1 -D 
and 2-D FFT algorithms exist, yet for each element of the output, the algorithms require access to every element of the 
input [13]. Thus, as one naive approach to paralleliiation, an image cannot be divided into sub-components that are 
processed completely independent. Typically, the 2-D FFT is computed as a series of 1-D FFT’s [14]. Thus, a 1-D 
FFT is performed on each row; then, the I-D FFT is performed on each column of the result. Thus, the total number of 
1-D FFTs is the product of the number of single inner loop iterations, the diversity-defocus image size, and 2 (for the 
rows and for the columns). For example, 4 diversity-defocus images of size 5 12x5 12, with 50 outer loops and 10 inner 
loops results in more than 4,000,000 1-D FFTs. 
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Fig. 2. Block Diagram of Iterative transform phase-retrieval of Fig. 1. 



The computational complexity of iterations increases with the adoption of the Hybrid Diversity Algorithm 
(HDA) which has been validated at the nanometer level [15]. The HDA will perform the ITA algorithm in Fig. 2 
multiple times, making modification to an adaptive diversity fimction to incorporate feedback. 

2. DISTRIBUTED ARCHITECUTRES 

Image-based wavefront sensing has a significantly higher computational requirement than analog optical 
wavefront sensing. Additionally, the computational requirements are proportional to the accuracy of the wavefront 
measurement. E.g., course alignment and course phasing use less complicated models to determine the necessary 
corrections; similarly, fine phasing requires more complex algorithms. Without sacrificing accuracy, it is optimal to 
minimize the time between image acquisition and correction [16]. Additionally, to increase the resolution of the 
wavefront requires an increase in the data set size, and thus computational complexity. 

The process of performing wavefront sensing on N Diversity-Defocused images is highly parallel for each 
image, as such, past approaches to increase performance have used 1 to N general-purpose CPUs as a cluster [17]. 
Consequently, this provides a maximum factor of N improvement, while having the negative effect of increasing power 
requirements, footprint, and cooling requirements by N. The primary solution is to provide N application specific, 
highly optimized computational cores. An earlier iterative-transform algorithm implementation for the Analog Devices 
Hammerhead DSP has been presented discussed, [lS]. 

To address these bottlenecks, super computing architectures are utilized to achieve the necessary 
computational demands of the 2-D FFT. As described, the 2-D FFT can be performed as a multiple step process of 
performing the 1-D FFT on each row and resulting column. The bottleneck for performing this on a distributed system 
becomes the resulting transpose of the entire image. As seen in Fig. 3, the distributed transpose necessitates an all-to-all 
communication, and thus is non-trivial as one increases the number of processing elements. This compares to the 
traditionally naive approach of modifying the index methodology for a 2-D image, i.e. x[i]D] = xlj][i], Vi, j E [l : N] . 
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Fig. 3. Characterization of a distributed transpose for 4 Processing units 

The computational cores used on each image can be further divided to perform a distributed 2-D FFT. To 
perform the distributed 2-D FFT, the computational requirements scales linearly with the number of sub-components up 
to the size of the diversity-defocus image. Thus, the computational requirements of the ITA on a 512x512 
diversity-defocus image size scales linearly until one reaches 5 12 sub-components of a computational core, or 5 12 
Processing units. For implementations of distributed 1-D FFTs, and thus, the scalability for an increase in the number 
of sub-components larger than the diversity-defocus image size, various algorithms have been explored externally [ 191. 
All discussion in this paper will assumes the 1-D FFT is the smallest component of division. 

The transpose with in the 2-D FFT is the main component of data transfer between sub-components; the 
transpose necessitates a transfer of a sub-blocks of data from each processing unit to every other processing unit, Fig. 3. 
The all-to-all communication does not scale without careful care given to the underling architecture of a distributed 
system. To achieve linear scalability in performance for an all-to-all communication, one must have an architecture that 
provides a direct connection of all processing units to all other processing units, such as the crossbar switch architecture 
[20] or the complete-graph of type K, (i.e. n branches for n nodes) [21]. In practice, this is not ideal because the number 
of interconnects per node grows as N-1, and thus, total number of interconnects for the complete-graph of type K,, 
grows as O(nz), as seen in (Eq. 1. Similarly, the crossbar switch architecture grows as O(n2) with the total number of 
switches. 



N ( N  - 1) N-1 Ci = 
i=l 2 

To address this problem, several solutions such as the n-dimensional hypercube or the grid architecture are 
used in practice. These architectures are not the optimal choice under the constraint of number of nodes and the number 
of branches per node. The optimal homogenous architecture for the all-to-all communication would minimize the graph 
diameter, under the constraint of degree of each node. Thus, the optimal graph would restrict the number of branches 
per node, while minimizing the maximum of all of the “shortest paths”. An example of a solution to this problem is the 
Peterson Graph, as seen in Fig. 4 (a). Furthermore, the Moore’s bound for a p-node undirected graph provides a 
methodology for placing a bound on the diameter, as seen in (Eq. 2 and Fig. 4 (b,c,d), 1221. For Fig. 4 (b,c,d), the leaf 
nodes need additional branches added to be a complete d-degree graph. For significantly large graphs, only optimum 
solutions exist, for example the Levi Graph, with 30 nodes and diameter 4, is an optimum solution for the 46 node 3- 
degree diameter 4 graph in Fig. 4 (d), [23]. 

(a) Peterson Graph, (1 0 
nodes, 3 branches per node): 
Diameter 2 

(b) Base architecture for 22 
nodes, 3 branches per 
node): ODtimal Diameter 3 

(c) Base architecture for 17 
nodes, 4 branches per 
node): Optimal Diameter 2 

Fig. 4. Architecture branches per node with varying diameters. 
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(d) Base architecture for 46 
nodes, 3 branches per 
node): Optimal Diameter 4 

In practice, it is impractical to develop such architectures because of scalability, feasibility, or cost. In many 
cases, simply minimizing the graph diameter does not provide an optimal solution because of load balancing, irregular 
network flow, or other problems. Yet, for the 2-D FFT transpose, the all-to-all communication is perfectly balanced and 
each node communicates at a pre-determined and predictable time. Thus, the graph diameter is the primary variable 
that is optimized for a given architecture for the solving the transpose problem. 

For this research several low-diameter architectures where evaluated and implemented, Fig. 8 and Fig. 9. The 
majority of the research was conducted on three independent systems: a 64 node cluster of Analog Devices TSlOl 
DSPs, a 24 node cluster of Analog Devices TS201 DSPs, and a 4 node cluster of Virtex 4 SX55 Xilinx FPGAs. The 
TSlOl system is rated at 96 GFlops and the TS201 system is rated at 72 GFlops. The TSlOl and TS201 both provide 
methodologies for increasing the performance of HDA for include ground-based wavefiont sensing, telescope image 
processing, laboratory optical processing, system design and tolerancing, Monte-Carlo simulations, and finite element 
modeling. The Virtex 4 SX55 system provides a path to radiation tolerant environments, [24]. 

The TSlOl and TS201 systems were purchased from Bittware, Inc, and the Virtex 4 SX system was purchased 
from Alpha Data. The TSlOl and TS201 systems are both arranged in clusters of 4 DSPs per board; with a shared 
SDRAM and 2 dedicated link ports to other nodes in the cluster, as seen in Fig. 6. The remaining 2 link ports are either 
routine to an external UO port for the TS-101 or routed to a Virtex 2 Pro for the TS201. The Virtex 4 SX chips have 



similar communication ports, a 146 I/O LVDS, which can be divided 4 ways that perform at the core clock speed of the 
Virtex 4. 

Fig. 5: Sixty Four node cluster of TSlOl DSPs. 
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Fig. 6: Cluster of four DSPs (TS101 and TS201) with shared bus to SDRAM memory and link ports. 

The four Virtex 4SX chips have been prototyped as a complete-graph I(4 architecture, additionally the 4 Virtex 
4SX chips are controlled by a master FPGA, a Virtex 4FX. Each SX chip is connected to the master FPGA using the 
same I/O configuration, Fig. 7. The SX chip is an FPGA that has been optimized for digital signal processing, while the 
FX chips have been designed to mimic a microcontroller. 

I 

Master FPGA 
Vuiex 4 FX 

Fig. 7: Cluster of four Virtex 4SX chips and one Virtex 4FX chip. 

The TS 10 1 processor has 4 bi-directional link ports that allow the direct connection between two chips. Other 
processors offer similar communication ports. Similarly, the TS20 1 DSPs have 4 dual channel uni-directional link 
ports, and thus minimize the turn around time in changing directions for data flow. This is advantages for the 2-D FFT 
because every node is sending and receiving data. As a first example of a the effects of a minimum diameter graph for 
the 2-D FFT refer to Fig. 8.  In this example, the node’s unique identifier and shortest path from 0 are listed. For graph 



(a), a cube, the shortest-path between node 0 and all other nodes is 3 or less, but for graph (b), a 1-mobius cube, the 
shortest-path between any two nodes is 2 or less [25,26]. For graph (b), the 2-D FFT is 17% faster than graph (a). 

To further explore the capabilities of the 64 node TSlOl DSP system, the number of DSPs per image was 
developed and tested for the cases 16, Fig. 9 (a,b) and 32 nodes, Fig. 9 (c). Results of this trade are listed in section 3. 
Currently, a division of the 64 DSP cluster is being used at the James-Webb-Space-Telescope test bed. Furthermore, for 
most applications of the ITA, multiple diversity-defocus images are used but for some applications only a single image 
is applicable. For this case, an architecture for 64 DSPs per image was constructed, Fig. 10. This builds upon the 
proven methodology from the 16 and 32 DSPs per image. 

Fig. 8: Two 8 DSP’s grid architectures, cube (a) and 1-mobius cube (b). Each node ID is listed, and distance 
of the shortest-path from node 0. 

(a) (b) (c) 
Fig. 9: Architectures developed and tested for 16 (a,b) and 32 (c) DSP. 

Fig. 10: Architectures design for 64 DSP. 



3. PERFORMANCE AM) TESTING 

The transition from 8 to 16 DSP’s per image reduced the sub-component block size for the all-to-all 
communication by 4, yet, still require the same total data transfer. For example, a 5 12x512 image on 8 DSP’s results in 
each DSP performing 1-D FFT’s on a 64x512 block. Each block is then divided into 8 sub-blocks of 64x64, where 
each sub-block is transmitted to the corresponding DSP. The 64x64 sub-block has 4096 elements, but for the 16 DSP 
case, the sub-block is 32x32 and has 1024 elements. The first architecture investigated based on the 16 DSP’s is shown 
in Fig. 9 (a) which maintains an overall low-diameter. With the necessary packet overhead for routing, the reduced 
sub-block size, and the turn-around time for data flow on the physical layer of the link ports, the result was less efficient 
than desired, and thus,,an alternative 16 DSP architecture was explored, Fig. 9 (b). This architecture utilized edge 
routing between the clusters of DSP’s, thus creating larger packets. This improvement resulted in an overall system 
improvement for the 2-D FFT by 24% for the 5 12x5 12 case. For larger images, the improvement was less significant 
because the sub-block size increases. 

For the 16 to 32 DSP’s per image, only the sub-clustered routing architecture was explored which is shown in 
Fig. 9 (c). For processing, i.e. I-D FFT’s and other mathematical routines, the improvement between 16 and 32 DSP’s 
is nearly linear. Thus, the computational routines provided a factor of x2 improvement. For most parallel computing 
applications, communication is the bottleneck preventing linear scalability. Contrary to bus architectures, there was an 
improvement for increasing the number of nodes. This is due to the fact that increasing the number of DSP’s also 
increases the total number of link port channels in the system, and hence, we are increasing the overall effective 
bandwidth. For the all-to-all communication, the 32 DSP’s architecture of Fig. 9 (c), was x1.2 times faster than the 16 
DSP’s architecture, Fig. 9 (b), for an overall improvement for the 2-D FFT of x1.7. Table 1 summarizes the actual 
timing for several relevant configurations (it is of interest to note that the 4-image 512x512 case of Table 1 is the 
configuration baselined for the James-Webb-Space-Telescope wavefront sensing). The 16 and 32 DSP’s per image use 
the architectures shown in Fig. 9 (b) and (c) respectively. Furthermore, there are 4 of these clusters operating on each 
image. For the algorithm listed in Fig. 2, there were 20 outer-loops and 5 inner-loops for a total of IO0 iterations; 
increasing or decreasing the total number of iterations will scale the timing accordingly by that amount. 

The implemented architectures of Fig. 9(b,c) for the 16 and 32 node architectures provide linear scalability 
with respect to image size. Intuitively, an NxN diversity defocus image would take 4 times longer than one half it size 
in each direction, i.e. N% xN% = %(NxN). Yet, for general purpose CPUs, this is not the case, as it has been shown, 
[12], that the computational performance, measured in Gflops, decreases with image size. The optimal image size for 
the FFT on a general purpose CPU is between 16x16 and 64x64, depending on the chipset. For the TSlOl and TS201 
architectures, this is not the case. The computational 1-D FFT scales linearly with array size, and the distributed 
transpose scales near linear. Thus, the difference in performance between various image sizes for the TSlOl 
architecture can be seen in Table 1, and averages 2.5 between images of size less than 5 12x5 12 (smaller numbers 
sign@ an independence between image size and performance time. For images larger than this, there is a performance 
hit between the 5 12 and the 1024 case because the external SDRAM must be used more heavily. 



Table 1: Image size scalability for 16 TS 101 DSP, Fig. 9 @); all times listed in seconds. 

Timing of the ITA algorithm, : 
1 Diversity-Defocu itions (seconds) 

Diversity Defocus Image Timing Increase 
Size (NxN) between images 

32 

64 

128 

256 

512 

1024 

2048 

Images, 1 iter( 

16 DSP timing 

0.0001 79 

0.000435 

0.001 17 

0.00290 

0.00819 

0.0783 

0.3265 

X 2.43 

X 2.68 

X 2.48 

X 2.83 

X 9.56 

4.17 I X  

4. CONCLUSIONS 
In summary, the HDA and ITA algorithms entail numerous 2-D FFTs for a single iteration of closed loop 

control. To achieve the requirements of current space missions that necessitate image-based wavefront sensing, a 
computational infrastructure must exist to achieve the requirements of closed loop control. Furthermore, a distributed 
computational architecture processing on each diversity defocus image is the optimal architecture in terms of 
performance, and various solutions depending on the desired footprint, power consumption, operating environment sets 
the criteria for the specification of the sub-components. For ground-based WFS, a cluster of DSPs is optimal for 
performance, while a radiation environment, just as L2 for JWST and TPF required radiation toleration sub- 
components, such as FPGAs. 

the TS 10 1 and TS20 1 DSP system to the Virtex 4 FPGAs. Currently, the baseline for the FPGA is a fixed point 
processing model, while the DSPs are performing 32 bit floating point. 

such as the optimal minimum image size for a fixed number of DSPs. For 16 DSPs, the run-time for a 32x32 diversity 
defocus image is the same as a 16x16 image, and similar results were seen for the 8 and 32 DSP architectures. It would 
be the work of a future research to determine the performance of a 1024 node cluster for a 2048x2048 image size. 

Given the different infrastructures between an FPGA and a DSP it is difficult to compare the performance of 

Additionally, for the TS 10 1 and TS20 1 systems, many subtle performance enhancements were discovered, 
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