1,174 research outputs found

    Electrochemical capacitance of a leaky nano-capacitor

    Get PDF
    We report a detailed theoretical investigation on electrochemical capacitance of a nanoscale capacitor where there is a DC coupling between the two conductors. For this ``leaky'' quantum capacitor, we have derived general analytic expressions of the linear and second order nonlinear electrochemical capacitance within a first principles quantum theory in the discrete potential approximation. Linear and nonlinear capacitance coefficients are also derived in a self-consistent manner without the latter approximation and the self-consistent analysis is suitable for numerical calculations. At linear order, the full quantum formula improves the semiclassical analysis in the tunneling regime. At nonlinear order which has not been studied before for leaky capacitors, the nonlinear capacitance and nonlinear nonequilibrium charge show interesting behavior. Our theory allows the investigation of crossover of capacitance from a full quantum to classical regimes as the distance between the two conductors is changed

    A FAP46 Mutant Provides New Insights into the Function and Assembly of the C1d Complex of the Ciliary Central Apparatus

    Get PDF
    Virtually all motile eukaryotic cilia and flagella have a \u279+2\u27 axoneme in which nine doublet microtubules surround two singlet microtubules. Associated with the central pair of microtubules are protein complexes that form at least seven biochemically and structurally distinct central pair projections. Analysis of mutants lacking specific projections has indicated that each may play a unique role in the control of flagellar motility. One of these is the C1d projection previously shown to contain the proteins FAP54, FAP46, FAP74 and FAP221/Pcdp1, which exhibits Ca(2+)-sensitive calmodulin binding. Here we report the isolation and characterization of a Chlamydomonas reinhardtii null mutant for FAP46. This mutant, fap46-1, lacks the C1d projection and has impaired motility, confirming the importance of this projection for normal flagellar movement. Those cells that are motile have severe defects in phototaxis and the photoshock response, underscoring a role for the C1d projection in Ca(2+)-mediated flagellar behavior. The data also reveal for the first time that the C1d projection is involved in the control of interdoublet sliding velocity. Our studies further identify a novel C1d subunit that we term C1d-87, give new insight into relationships between the C1d subunits, and provide evidence for multiple sites of calmodulin interaction within the C1d projection. These results represent significant advances in our understanding of an important but little studied axonemal structure

    Partial Densities of States, Scattering Matrices, and Green's Functions

    Full text link
    The response of an arbitrary scattering problem to quasi-static perturbations in the scattering potential is naturally expressed in terms of a set of local partial densities of states and a set of sensitivities each associated with one element of the scattering matrix. We define the local partial densities of states and the sensitivities in terms of functional derivatives of the scattering matrix and discuss their relation to the Green's function. Certain combinations of the local partial densities of states represent the injectivity of a scattering channel into the system and the emissivity into a scattering channel. It is shown that the injectivities and emissivities are simply related to the absolute square of the scattering wave-function. We discuss also the connection of the partial densities of states and the sensitivities to characteristic times. We apply these concepts to a delta-barrier and to the local Larmor clock.Comment: 13 pages (revtex), 4 figure

    Scattering Theory of Mesoscopic Detectors

    Full text link
    We consider a two-level system coupled to a mesoscopic two-terminal conductor that acts as measuring device. As a convenient description of the conductor we introduce its scattering matrix. We show how its elements can be used to calculate the relaxation and decoherence rates of the two-level system. Special emphasis is laid on the charge screening in the conductor that becomes important in the many-channel limit. Finally we give some examples that illustrate charge screening in different limits.Comment: contribution to the ECOSS-21 proceedings in a special issue of SURFACE SCIENC

    The Use of Predator Proof Fencing as a Management Tool in the Hawaiian Islands: A Case Study of Ka`ena Point Natural Area Reserve

    Get PDF
    Reports were scanned in black and white at a resolution of 600 dots per inch and were converted to text using Adobe Paper Capture Plug-in.The Ka`ena Point Ecosystem Restoration Project was the result of a partnership between the Hawai`i Department of Land and Natural Resources, Divisions of Forestry and Wildlife and State Parks, the U.S. Fish and Wildlife Service, and the Hawai`i Chapter of The Wildlife Society. Ka`ena Point Natural Area Reserve (NAR) hosts one of the largest seabird colonies in the main Hawaiian islands, three species of endangered plants, and is a pupping ground for the endangered Hawaiian monk seals. Prior to fence construction, nesting seabirds and native plants were under constant threat from predatory animals; up to 15% of seabird chicks were killed each year prior to fledging and many endangered plants were unable to reproduce as a result of seed predation. The project involved the construction of predator-proof fencing (2m tall) to prevent feral predators such as dogs, cats, mongoose, rats and mice from entering into 20ha of coastal habitat within Ka`ena Point, followed by removal of these species

    Reporting Diarrhoea through a Vernacular Term in Quechua-speaking Settings of Rural Bolivia

    Get PDF
    Field studies often use caregiver-reported diarrhoea and related symptoms to measure child morbidity. There are various vernacular terms to define diarrhoea that vary across the local cultural contexts. The relationship between vernacular definitions of diarrhoea and symptoms-based definitions is not well-documented. This paper describes the association of the vernacular Quechua term k'echalera with the symptoms-based standard definition of diarrhoea in rural Bolivian settings. During a cluster randomized trial in rural Bolivia, both signs and symptoms of diarrhoea and reports of k'echalera were collected for children aged less than five years. Reported k'echalera were found to be associated with important changes in stool frequency, consistency, and presence of blood and mucus. Reported k'echalera were highly related to three of four recorded categories of watery stool. The intermediate (milk-rice) stool consistency, which fits into the definition of watery stool, was not strongly related to k'echalera. Mucus in the stool was also associated with k'echalera; however, its presence in k'echalera-free days accounted for at least 50% of the possible false negatives. The sensitivity and specificity of the term k'echalera were estimated by Bayesian methods, allowing for both symptoms of diarrhoea and reports of k'echalera to be subject to diagnosis error. An average specificity of at least 97% and the sensitivity of at least 50% were obtained. The findings suggest that the use of k'echalera would identify fewer cases of diarrhoea than a symptom-based definition in rural Bolivia

    Crossovers in the thermal decay of metastable states in discrete systems

    Full text link
    The thermal decay of linear chains from a metastable state is investigated. A crossover from rigid to elastic decay occurs when the number of particles, the single particle energy barrier or the coupling strength between the particles is varied. In the rigid regime, the single particle energy barrier is small compared to the coupling strength and the decay occurs via a uniform saddlepoint solution, with all degrees of freedom decaying instantly. Increasing the barrier one enters the elastic regime, where the decay is due to bent saddlepoint configurations using the elasticity of the chain to lower their activation energy. Close to the rigid-to-elastic crossover, nucleation occurs at the boundaries of the system. However, in large systems, a second crossover from boundary to bulk nucleation can be found within the elastic regime, when the single particle energy barrier is further increased. We compute the decay rate in the rigid and in the elastic regimes within the Gaussian approximation. Around the rigid-to-elastic crossover, the calculations are performed beyond the steepest descent approximation. In this region, the prefactor exhibits a scaling property. The theoretical results are discussed in the context of discrete Josephson transmission lines and pancake vortex stacks that are pinned by columnar defects.Comment: 13 pages, RevTeX, 7 PS-figure

    Comments on gluon scattering amplitudes via AdS/CFT

    Full text link
    In this article we consider n gluon color ordered, planar amplitudes in N=4 super Yang Mills at strong 't Hooft coupling. These amplitudes are approximated by classical surfaces in AdS_5 space. We compute the value of the amplitude for a particular kinematic configuration for a large number of gluons and find that the result disagrees with a recent guess for the exact value of the amplitude. Our results are still compatible with a possible relation between amplitudes and Wilson loops. In addition, we also give a prescription for computing processes involving local operators and asymptotic states with a fixed number of gluons. As a byproduct, we also obtain a string theory prescription for computing the dual of the ordinary Wilson loop, Tr P exp[ i\oint A ], with no couplings to the scalars. We also evaluate the quark-antiquark potential at two loops.Comment: 27 pages, 9 figures,v3:minor correction
    corecore