6,053 research outputs found

    Foot and Mouth Epidemic Reduces Cases of Human Cryptosporidiosis in Scotland.

    Get PDF
    In Scotland, rates of cryptosporidiosis infection in humans peak during the spring, a peak that is coincident with the peak in rates of infection in farm animals (during lambing and calving time). Here we show that, during the outbreak of foot and mouth disease (FMD) in 2001, there was a significant reduction in human cases of cryptosporidiosis infection in southern Scotland, where FMD was present, whereas, in the rest of Scotland, there was a reduction in cases that was not significant. We associate the reduction in human cases of cryptosporidiosis infection with the reduction in the number of young farm animals, together with restrictions on movement of both farm animals and humans, during the outbreak of FMD in 2001. We further show that, during 2002, there was recovery in the rate of cryptosporidiosis infection in humans throughout Scotland, particularly in the FMD-infected area, but that rates of infection remained lower, though not significantly, than pre-2001 levels

    A new perspective on the Ī“13C signal preserved in speleothems using LCā€“IRMS analysis of bulk organic matter and compound specific stable isotope analysis

    Get PDF
    The analysis of Ī“13C in speleothem calcite is established as a palaeoenvironmental proxy, but records can often be complex to interpret due to multiple controls on the signal. Here we present a novel palaeoenvironmental application of non-purgeable organic carbon (NPOC) Ī“13C analysis and compound-specific isotope analysis (CSIA) to speleothems, and compare the resultant signals to a conventional calcite Ī“13C record. By accessing the carbon pool held in molecular organic matter, we are able for the first time to produce stable isotope records complementary to the CO2-derived signal from the speleothem calcite, and begin to identify separate ecological and climatic controls. In this sample from north-west Scotland, the calcite Ī“13C record and the NPOC Ī“13C both show fluctuations at a period of increasing wetness and change from birch woodland to more open peatland, the NPOC signal having a strong correlation with biomarkers for vegetation change. We interpret an inverse correlation between the NPOC and CO2 Ī“13C signals as primarily driven by changes in soil conditions impacting upon microbial activity, with decreased activity leading to a reduction in 13C enrichment of the residual organic matter (the NPOC fraction), and an increase in Ī“13C in the CO2 pool (calcite) due to a decrease in respired 12C. This opens the way for the application of parallel analyses to distinguish between soil conditions and vegetation parameters as the primary control on a record, and highlights the advantage of combining both inorganic and organic geochemical techniques in the palaeoenvironmental interpretation of stable carbon isotopic record

    Ī“13C analysis of bulk organic matter in speleothems using liquid chromatography-isotope ratio mass spectrometry

    Get PDF
    The determination of Ī“13C values in speleothems is of considerable importance in palaeoenvironmental research, but has focussed solely on analysis of the carbonate. Here we demonstrate a new method for analysing the Ī“13C values of organic matter (OM) trapped in speleothems, utilising flow injection liquid chromatography-isotope ratio mass spectrometry (LCIRMS).Developmental analysis using a homogenised speleothem powder showed that the method is robust, with repeated digests and analyses having an average standard deviation of 0.1ā€°. Dilution tests with samples of 4-23Āµg total organic carbon (TOC) show relatively small linearity effects, with the overall standard deviation across a peak response range of 1700-9000 mV being 0.2ā€°

    Starch mobilization in leaves

    Get PDF
    Starch mobilization is well understood in cereal endosperms, but both the pathway and the regulation of the process are poorly characterized in other types of plant organs. Arabidopsis leaves offer the opportunity for rapid progress in this area, because of the genomic resources available in this species and the ease with which starch synthesis and degradation can be monitored and manipulated. Progress in understanding three aspects of starch degradation is described: the role of disproportionating enzyme, the importance of phosphorolytic degradation, and new evidence about the involvement of a starchā€phosphorylating enzyme in the degradative process. Major areas requiring further research are outline

    Shifts in mid- to late-Holocene anion composition in Elk Lake (Grant County, Minnesota): Comparison of diatom and ostracode inferences

    Get PDF
    The fossil diatom record from Elk Lake (Grant County, Minnesota) was used to reconstruct salinity and brine type between 2640 and 4645 14C yr BP. This lake was selected for a brine-type reconstruction because a previous study using fossil-ostracode assemblages indicated a shift in anion composition during the mid-Holocene (Smith et al., 1997). Salinity was reconstructed using a transfer function developed for the Northern Great Plains (NGP) of North America; the reconstruction revealed that salinity was higher (1.5ā€“6.2 g lāˆ’1) between ~4000 and 4645 14C yr BP and dropped to 0.35ā€“1.2 g lāˆ’1 after 4000 14C yr BP. The anion composition of the system was investigated by passively plotting fossil diatom assemblages onto a canonical correspondence analysis (CCA) biplot of the NGP modern samples to determine where core assemblages fell with respect to brine type. The biplot suggests that Elk Lake was mainly a bicarbonate system, but temporarily shifted to sulfate domination at 4080 14C yr BP. Both the salinity and brine-type reconstructions essentially agree with results from Smith et al. (1997), but the diatom record provides less-definitive information on anion proportions as compared to anion concentrations. Because shifts in the relative abundances of anion-associated diatom taxa generally tracked the ostracode-inferred changes in brine type, we conclude that fossil diatom assemblages can reveal information on shifts in brine type over time and provide insight into brine evolution and groundwater behavior in a lake system

    The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.)

    Get PDF
    The evolution of trichromatic colour vision by the majority of anthropoid primates has been linked to the efficient detection and selection of food, particularly ripe fruits among leaves in dappled light. Modelling of visual signals has shown that trichromats should be more efficient than dichromats at distinguishing both fruits from leaves and ripe from unripe fruits. This prediction is tested in a controlled captive setting using stimuli recreated from those actually encountered by wild tamarins (Saguinus spp.). Dietary data and reflectance spectra of Abuta fluminum fruits eaten by wild saddleback (Saguinus fuscicollis) and moustached (Saguinus mystax) tamarins and their associated leaves were collected in Peru. A. fluminum leaves, and fruits in three stages of ripeness, were reproduced and presented to captive saddleback and red-bellied tamarins (Saguinus labiatus). Trichromats were quicker to learn the task and were more efficient at selecting ripe fruits than were dichromats. This is the first time that a trichromatic foraging advantage has been demonstrated for monkeys using naturalistic stimuli with the same chromatic properties as those encountered by wild animal

    Singlet oxygen initiates a plastid signal controlling photosynthetic gene expression.

    Get PDF
    Retrograde signals from the plastid regulate photosynthesis-associated nuclear genes and are essential to successful chloroplast biogenesis. One model is that a positive haem-related signal promotes photosynthetic gene expression in a pathway that is abolished by the herbicide norflurazon. Far-red light (FR) pretreatment and transfer to white light also results in plastid damage and loss of photosynthetic gene expression. Here, we investigated whether norflurazon and FR pretreatment affect the same retrograde signal. We used transcriptome analysis and real-time reverse transcription-polymerase chain reaction (RT-PCR) to analyse the effects of these treatments on nuclear gene expression in various Arabidopsis (Arabidopsis thaliana) retrograde signalling mutants. Results showed that the two treatments inhibited largely different nuclear gene sets, suggesting that they affected different retrograde signals. Moreover, FR pretreatment resulted in singlet oxygen (1 O2 ) production and a rapid inhibition of photosynthetic gene expression. This inhibition was partially blocked in the executer1executer2 mutant, which is impaired in 1 O2 signalling. Our data support a new model in which a 1 O2 retrograde signal, generated by chlorophyll precursors, inhibits expression of key photosynthetic and chlorophyll synthesis genes to prevent photo-oxidative damage during de-etiolation. Such a signal would provide a counterbalance to the positive haem-related signal to fine tune regulation of chloroplast biogenesis.This work was funded by BBSRC grants 51/P17214 and BB/ J018139/1 to M.J.T. and BB/J018694/1 to A.G.S
    • ā€¦
    corecore