8,201 research outputs found

    Observation of a parity oscillation in the conductance of atomic wires

    Get PDF
    Using a scanning tunnel microscope or mechanically controlled break junctions, atomic contacts of Au, Pt and Ir are pulled to form chains of atoms. We have recorded traces of conductance during the pulling process and averaged these for a large amount of contacts. An oscillatory evolution of conductance is observed during the formation of the monoatomic chain suggesting a dependence on even or odd numbers of atoms forming the chain. This behaviour is not only present in the monovalent metal Au, as it has been previously predicted, but is also found in the other metals which form chains suggesting it to be a universal feature of atomic wires

    Salt enhancement by aroma compounds

    Get PDF

    An Automated Design-flow for FPGA-based Sequential Simulation

    Get PDF
    In this paper we describe the automated design flow that will transform and map a given homogeneous or heterogeneous hardware design into an FPGA that performs a cycle accurate simulation. The flow replaces the required manually performed transformation and can be embedded in existing standard synthesis flows. Compared to the earlier manually translated designs, this automated flow resulted in a reduced number of FPGA hardware resources and higher simulation frequencies. The implementation of the complete design flow is work in progress.\u

    Exotic Meson Decay Widths using Lattice QCD

    Get PDF
    A decay width calculation for a hybrid exotic meson h, with JPC=1-+, is presented for the channel h->pi+a1. This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and pi+a1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative pi+a1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes.Comment: 9 pages, 8 figures, RevTex4, minor change to Fig.

    Newly Discovered Bright z~9-10 Galaxies and Improved Constraints on Their Prevalence Using the Full CANDELS Area

    Full text link
    We report the results of an expanded search for z~9-10 candidates over the ~883 arcmin^2 CANDELS+ERS fields. This study adds 147 arcmin^2 to the search area we consider over the CANDELS COSMOS, UDS, and EGS fields, while expanding our selection to include sources with bluer J_{125}-H_{160} colors than our previous J_{125}-H_{160}>0.5 mag selection. In searching for new z~9-10 candidates, we make full use of all available HST, Spitzer/IRAC, and ground-based imaging data. As a result of our expanded search and use of broader color criteria, 3 new candidate z~9-10 galaxies are identified. We also find again the z=8.683 source previously confirmed by Zitrin+2015. This brings our sample of probable z~9-11 galaxy candidates over the CANDELS+ERS fields to 19 sources in total, equivalent to 1 candidate per 47 arcmin^2 (1 per 10 WFC3/IR fields). To be comprehensive, we also discuss 28 mostly lower likelihood z~9-10 candidates, including some sources that seem to be reliably at z>8 using the HST+IRAC data alone, but which the ground-based data show are much more likely at z<4. One case example is a bright z~9.4 candidate COS910-8 which seems instead to be at z~2. Based on this expanded sample, we obtain a more robust LF at z~9 and improved constraints on the volume density of bright z~9 and z~10 galaxies. Our improved z~9-10 results again reinforce previous findings for strong evolution in the UV LF at z>8, with a factor of ~10 evolution seen in the luminosity density from z~10 to z~8.Comment: 22 pages, 12 figures, 6 tables, accepted for publication in the Astrophysical Journa

    The GREATS Hβ\beta+[OIII] Luminosity Function and Galaxy Properties at z8\mathbf{z\sim8}: Walking the Way of JWST

    Get PDF
    The James Webb Space Telescope will allow to spectroscopically study an unprecedented number of galaxies deep into the reionization era, notably by detecting [OIII] and Hβ\beta nebular emission lines. To efficiently prepare such observations, we photometrically select a large sample of galaxies at z8z\sim8 and study their rest-frame optical emission lines. Combining data from the GOODS Re-ionization Era wide-Area Treasury from Spitzer (GREATS) survey and from HST, we perform spectral energy distribution (SED) fitting, using synthetic SEDs from a large grid of photoionization models. The deep Spitzer/IRAC data combined with our models exploring a large parameter space enables to constrain the [OIII]+Hβ\beta fluxes and equivalent widths for our sample, as well as the average physical properties of z8z\sim8 galaxies, such as the ionizing photon production efficiency with log(ξion/erg1Hz)25.77\log(\xi_\mathrm{ion}/\mathrm{erg}^{-1}\hspace{1mm}\mathrm{Hz})\geq25.77. We find a relatively tight correlation between the [OIII]+Hβ\beta and UV luminosity, which we use to derive for the first time the [OIII]+Hβ\beta luminosity function (LF) at z8z\sim8. The z8z\sim8 [OIII]+Hβ\beta LF is higher at all luminosities compared to lower redshift, as opposed to the UV LF, due to an increase of the [OIII]+Hβ\beta luminosity at a given UV luminosity from z3z\sim3 to z8z\sim8. Finally, using the [OIII]+Hβ\beta LF, we make predictions for JWST/NIRSpec number counts of z8z\sim8 galaxies. We find that the current wide-area extragalactic legacy fields are too shallow to use JWST at maximal efficiency for z8z\sim8 spectroscopy even at 1hr depth and JWST pre-imaging to 30\gtrsim30 mag will be required.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    A Class of Nonperturbative Configurations in Abelian-Higgs Models: Complexity from Dynamical Symmetry Breaking

    Get PDF
    We present a numerical investigation of the dynamics of symmetry breaking in both Abelian and non-Abelian [SU(2)][S U (2)] Higgs models in three spatial dimensions. We find a class of time-dependent, long-lived nonperturbative field configurations within the range of parameters corresponding to type-1 superconductors, that is, with vector masses (mvm_v) larger than scalar masses (msm_s). We argue that these emergent nontopological configurations are related to oscillons found previously in other contexts. For the Abelian-Higgs model, our lattice implementation allows us to map the range of parameter space -- the values of β=(ms/mv)2\beta = (m_s /m_v)^2 -- where such configurations exist and to follow them for times t \sim \O(10^5) m^{-1}. An investigation of their properties for z^\hat z-symmetric models reveals an enormously rich structure of resonances and mode-mode oscillations reminiscent of excited atomic states. For the SU(2) case, we present preliminary results indicating the presence of similar oscillonic configurations.Comment: 21 pages, 19 figures, prd, revte

    On the Formation of Copper Linear Atomic Suspended Chains

    Full text link
    We report high resolution transmission electron microscopy and classical molecular dynamics simulation results of mechanically stretching copper nanowires conducting to linear atomic suspended chains (LACs) formation. In contrast with some previous experimental and theoretical work in literature that stated that the formation of LACs for copper should not exist our results showed the existence of LAC for the [111], [110], and [100] crystallographic directions, being thus the sequence of most probable occurence.Comment: 4 pages, 3 figure
    corecore