20 research outputs found

    Application of reflectance parameters in the estimation of the structural order of coals and carbonaceous materials. Precision and bias of measurements derived from the ICCP structural working group

    Get PDF
    Optical reflectance of vitrinite is one of the fundamental physical properties that have been used for the study of coal and carbonaceous materials. Organic matter in coals and carbonaceous matter consists mainly of aromatic lamellae, whose dimensions and spatial orientation define its internal structure. Various reflectance parameters describe well the average degree of order of the molecular structure of organic matter. Moreover, reflectance parameters are numerical values which characterize the samples unambiguously, facilitating the comparison of the optical properties of different carbonaceous materials as well as comparison between optical parameters and other physical or chemical factors. The focus of this study is the evaluation of the precision and bias of reflectance measurements (R and R) performed by various analysts in different laboratories in order to check the applicability of reflectance parameters to the estimation of the structural order of coals and carbonaceous materials. Additionally, it was desirable to compare reflectance parameters with other parameters obtained by different analytical methods able to provide structural information. The consistency and repeatability of the reflectance measurements obtained by different participants turned out to enable the drawing of similar conclusions regarding the structural transformation of anthracite during heating. Good correlations were found between the reflectance parameters studied and structural factors obtained by comparative methods. The reflectance parameters examined proved to be very sensitive to any changes of the structural order of coals and carbonaceous materials and seem to be a perfect complement to structural studies made by X-ray diffraction or Raman spectroscopy

    Loss of NRF-2 and PGC-1伪 genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a multi-factorial disease that is the leading cause of irreversible and severe vision loss in the developed countries. It has been suggested that the pathogenesis of dry AMD involves impaired protein degradation in retinal pigment epithelial cells (RPE). RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, DNA and lipids and evoke tissue deterioration during the aging process. The ubiquitin-proteasome pathway and the lysosomal/autophagosomal pathway are the two major proteolytic systems in eukaryotic cells. NRF-2 (nuclear factor-erythroid 2-related factor-2) and PGC-1 alpha (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) are master transcription factors in the regulation of cellular detoxification. We investigated the role of NRF-2 and PGC-1 alpha in the regulation of RPE cell structure and function by using global double knockout (dKO) mice. The NRF-2/PGC-1 alpha dKO mice exhibited significant age-dependent RPE degeneration, accumulation of the oxidative stress marker, 4-HNE (4-hydroxynonenal), the endoplasmic reticulum stress markers GRP78 (glucose-regulated protein 78) and ATF4 (activating transcription factor 4), and damaged mitochondria. Moreover, levels of protein ubiquitination and autophagy markers p62/SQSTM1 (sequestosome 1), Beclin-1 and LC3B (microtubule associated protein 1 light chain 3 beta) were significantly increased together with the Iba-1 (ionized calcium binding adaptor molecule 1) mononuclear phagocyte marker and an enlargement of RPE size. These histopathological changes of RPE were accompanied by photoreceptor dysmorphology and vision loss as revealed by electroretinography. Consequently, these novel findings suggest that the NRF-2/PGC-1 alpha dKO mouse is a valuable model for investigating the role of proteasomal and autophagy clearance in the RPE and in the development of dry AMD.Peer reviewe

    Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications.

    Get PDF
    BACKGROUND: Ectasia development occurs due to a chronic corneal biomechanical decompensation or weakness, resulting in stromal thinning and corneal protrusion. This leads to corneal steepening, increase in astigmatism, and irregularity. In corneal refractive surgery, the detection of mild forms of ectasia pre-operatively is essential to avoid post-operative progressive ectasia, which also depends on the impact of the procedure on the cornea. METHOD: The advent of 3D tomography is proven as a significant advancement to further characterize corneal shape beyond front surface topography, which is still relevant. While screening tests for ectasia had been limited to corneal shape (geometry) assessment, clinical biomechanical assessment has been possible since the introduction of the Ocular Response Analyzer (Reichert Ophthalmic Instruments, Buffalo, USA) in 2005 and the Corvis ST (Oculus Optikgerate GmbH, Wetzlar, Germany) in 2010. Direct clinical biomechanical evaluation is recognized as paramount, especially in detection of mild ectatic cases and characterization of the susceptibility for ectasia progression for any cornea. CONCLUSIONS: The purpose of this review is to describe the current state of clinical evaluation of corneal biomechanics, focusing on the most recent advances of commercially available instruments and also on future developments, such as Brillouin microscopy.(undefined)info:eu-repo/semantics/publishedVersio

    Deficiency of the RNA-binding protein ELAVL1/HuR leads to the failure of endogenous and exogenous neuroprotection of retinal ganglion cells

    No full text
    Introduction: ELAVL1/HuR is a keystone regulator of gene expression at the posttranscriptional level, including stress response and homeostasis maintenance. The aim of this study was to evaluate the impact of hur silencing on the age-related degeneration of retinal ganglion cells (RGC), which potentially describes the efficiency of endogenous neuroprotection mechanisms, as well as to assess the exogenous neuroprotection capacity of hur-silenced RGC in the rat glaucoma model. Methods: The study consisted of in vitro and in vivo approaches. In vitro, we used rat B-35 cells to investigate, whether AAV-shRNA-HuR delivery affects survival and oxidative stress markers under temperature and excitotoxic insults. In vivo approach consisted of two different settings. In first one, 35 eight-week-old rats received intravitreal injection of AAV-shRNA-HuR or AAV-shRNA scramble control. Animals underwent electroretinography tests and were sacrificed 2, 4 or 6 months after injection. Retinas and optic nerves were collected and processed for immunostainings, electron microscopy and stereology. For the second approach, animals received similar gene constructs. To induce chronic glaucoma, 8 weeks after AAV injection, unilateral episcleral vein cauterization was performed. Animals from each group received intravitreal injection of metallothionein II. Animals underwent electroretinography tests and were sacrificed 8 weeks later. Retinas and optic nerves were collected and processed for immunostainings, electron microscopy and stereology. Results: Silencing of hur induced apoptosis and increased oxidative stress markers in B-35 cells. Additionally, shRNA treatment impaired the cellular stress response to temperature and excitotoxic insults. In vivo, RGC count was decreased by 39% in shRNA-HuR group 6 months after injection, when compared to shRNA scramble control group. In neuroprotection study, the average loss of RGCs was 35% in animals with glaucoma treated with metallothionein and shRNA-HuR and 11.4% in animals with glaucoma treated with metallothionein and the scramble control shRNA. An alteration in HuR cellular content resulted in diminished photopic negative responses in the electroretinogram. Conclusions: Based on our findings, we conclude that HuR is essential for the survival and efficient neuroprotection of RGC and that the induced alteration in HuR content accelerates both the age-related and glaucoma-induced decline in RGC number and function, further confirming HuR鈥檚 key role in maintaining cell homeostasis and its possible involvement in the pathogenesis of glaucoma

    Increased intraocular pressure alters the cellular distribution of HuR protein in retinal ganglion cells - A possible sign of endogenous neuroprotection failure.

    No full text
    The RNA-binding protein, HuR, modulates mRNA processing and gene expression of several stress response proteins i.e. Hsp70 and p53 that have been postulated to be involved in the pathogenesis of glaucoma, a chronic optic neuropathy leading to irreversible blindness. We evaluated HuR protein expression in retinas and optic nerves of glaucomatous rats and human primary open angle glaucoma patients and its possible impact on stress response mechanisms. We found that the cytoplasmic content of HuR was reduced more extensively in glaucomatous retinas than in optic nerves and this was linked with a declined cytoplasmic Hsp70 level and p53 nuclear translocation. In the optic nerve, the p53 content was decreased as a feature of reactive gliosis. Based on our findings, we conclude that the alteration in the HuR content, observed both in rat glaucoma model and human glaucoma samples, affects post-transcriptionally the expression of genes crucial for maintaining cell homeostasis; therefore, we postulate that HuR may be involved in the pathogenesis of glaucoma

    Data from: Changes in corneal biomechanical properties after long-term topical prostaglandin therapy

    No full text
    Objective: To compare corneal biomechanical properties, measured by a newly developed tonometer (Corneal Visualization Scheimpflug Technology?Corvis ST), in untreated primary open angle glaucoma (POAG) patients?POAG patients with long-term topical prostaglandin analog (PGA) therapy and in normal controls. Further is to investigate the potential effects of PGA on corneal biomechanics. Methods: In this case-control study, 35 consecutive medication na茂ve eyes with POAG, 34 POAG eyes with at least 2 years treatment by PGA and 19 normal eyes were included. Intraocular pressure (IOP), central corneal thickness (CCT) and corneal biomechanical parameters, including deformation amplitude (DA), applanation time (AT1 and AT2), applanation length (AL1 and AL2), applanation velocity (AV1 and AV2), and peak distance and radius were measured using Corvis ST. Axial length and corneal curvature were measured with partial coherence interferometry (IOLMaster, Zeiss, Germany). General linear model analysis was performed to investigate the corneal biomechanical property changes among the normal controls, newly diagnosed POAG patients and POAG patients with long-term PGA treatment, and among the subgroups of different types of PGA treatment, including bimatoprost, latanoprost and travoprost. Furthermore, pairwise comparisons using Bonferroni correction for least squares means were employed. Results: AT1 (p<0.0001), AV1 (p<0.0001), AT2 (p=0.0001), AV2 (p<0.0001) and DA (p=0.0004) in newly diagnosed glaucoma patients were significantly different from those in normal subjects and in patients underwent at least 2 years topical PGA therapy after adjusting for age and gender. After adjusting for age, gender, IOP, CCT, axial length and corneal curvature, a significant difference was detected for DA between glaucoma patients without PGA treatment and patients with long-term PGA therapy (p=0.0387). Furthermore, there were no statistical significant differences in all of the corneal biomechanical parameters among the 3 types of PGA therapy subgroups, namely bimatoprost, latanoprost and travoprost. Conclusions: Significant changes in corneal deformation parameters were found among untreated POAG patients, POAG patients with long-term topical PGA therapy and normal controls. Long-term topical PGA treatment might have a direct effect on corneal biomechanical properties in addition to the indirect effect owing to the PGA-induced IOP reduction and CCT decrease on corneal dynamic properties

    Open source software for the analysis of corneal deformation parameters on the images from the Corvis tonometer

    No full text
    Background: The software supplied with the Corvis tonometer (which is designed to measure intraocular pressure with the use of the air-puff method) is limited to providing basic numerical data. These data relate to the values of the measured intraocular pressure and, for example, applanation amplitudes. However, on the basis of a sequence of images obtained from the Corvis tonometer, it is possible to obtain much more information which is not available in its original software. This will be presented in this paper. Material and method: The proposed software has been tested on 1400 images from the Corvis tonometer. The number of analysed 2D images (with a resolution of 200脳576 pixels) in a sequence is arbitrary. However, in typical cases there are 140 images. The proposed software has been written in Matlab (Version 7.11.0.584, R2010b). The methods of image analysis and processing and in particular edge detection and the fast Fourier transform have been applied. Results and discussion: The software allows for fully automatic (1) acquisition of 12 new parameters previously unavailable in the original software of the Corvis tonometer. It also enables off-line (2) manual and (3) automatic browsing of images in a sequence; 3D graph visualization of: (4) the corneal deformation and (5) eyeball response; 6) change of the colour palette; (7) filtration and (8) visualization of selected measured values on individual 2D images. In addition, the proposed software enables (9) to save the obtained results for further analysis and processing. Conclusions: The dedicated software described in this paper enables to obtain additional new features of corneal deformations during intraocular pressure measurement. The software can be applied in the diagnosis of corneal deformation vibrations, glaucoma diagnosis, evaluation of measurement repeatability and others. The software has no licensing restrictions and can be used both commercially and non-commercially without any limitations
    corecore