1,180 research outputs found

    Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico.

    Get PDF
    The version on PEARL: Corrected proofs are Articles in Press that contain the authors' corrections. Final citation details, e.g., volume/issue number, publication year and page numbers, still need to be added and the text might change before final publication. Although corrected proofs do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI , as follows: author(s), article title, journal (year), DOIExtensive CO2 vents have been discovered in the Wagner Basin, northern Gulf of California, where they create large areas with lowered seawater pH. Such areas are suitable for investigations of long-term biological effects of ocean acidification and effects of CO2 leakage from subsea carbon capture storage. Here, we show responses of benthic foraminifera to seawater pH gradients at 74-207m water depth. Living (rose Bengal stained) benthic foraminifera included Nonionella basispinata, Epistominella bradyana and Bulimina marginata. Studies on foraminifera at CO2 vents in the Mediterranean and off Papua New Guinea have shown dramatic long-term effects of acidified seawater. We found living calcareous benthic foraminifera in low pH conditions in the northern Gulf of California, although there was an impoverished species assemblage and evidence of post-mortem test dissolution

    Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses.

    Get PDF
    Flaviviruses continue to cause globally relevant epidemics and have emerged or re-emerged in regions that were previously unaffected. Factors determining emergence of flaviviruses and continuing circulation in sylvatic cycles are incompletely understood. Here we identify potential sylvatic reservoirs of flaviviruses and characterize the macro-ecological traits common to known wildlife hosts to predict the risk of sylvatic flavivirus transmission among wildlife and identify regions that could be vulnerable to outbreaks. We evaluate variability in wildlife hosts for zoonotic flaviviruses and find that flaviviruses group together in distinct clusters with similar hosts. Models incorporating ecological and climatic variables as well as life history traits shared by flaviviruses predict new host species with similar host characteristics. The combination of vector distribution data with models for flavivirus hosts allows for prediction of  global vulnerability to flaviviruses and provides potential targets for disease surveillance in animals and humans

    Taxonomy, biostratigraphy, and phylogeny of Oligocene Streptochilus

    Get PDF

    Foraminifera of the Gault Clay Formation: An update

    Get PDF
    The foraminifera of the Gault Clay Formation (Middle and Upper Albian) are reviewed and their biostratigraphy compared to that of the standard ammonite-based zonation and the original bed numbers that are used by most workers on the formation. The change from an aragonitic assemblage in the Lower Gault to an assemblage dominated by agglutinated foraminifera in the Upper Gault is discussed in terms of changing palaeogeography and sea-level

    Vertical distribution and diurnal migration of atlantid heteropods

    Get PDF
    © Inter-Research 201 Understanding the vertical distribution and migratory behaviour of shelled holoplanktonic gastropods is essential in determining the environmental conditions to which they are exposed. This is increasingly important in understanding the effects of ocean acidification and climate change. Here we investigated the vertical distribution of atlantid heteropods by collating data from publications and collections and using the oxygen isotope (? 18 O) composition of single aragonitic shells. Data from publications and collections show 2 patterns of migration behaviour: small species that reside in shallow water at all times, and larger species that make diurnal migrations from the surface at night to deep waters during the daytime. The ? 18 O data show that all species analysed (n = 16) calcify their shells close to the deep chlorophyll maximum. This was within the upper 110 m of the ocean for 15 species, and down to 146 m for a single species. These findings confirm that many atlantid species are exposed to large environmental variations over a diurnal cycle and may already be well adapted to face ocean changes. However, all species analysed rely on aragonite supersaturated waters in the upper < 150 m of the ocean to produce their shells, a region that is projected to undergo the earliest and greatest changes in response to increased anthropogenic CO 2
    corecore