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Abstract 

The subpolar NE Atlantic Ocean experiences seasonal fluxes of labile organic matter 

(phytodetritus) which are expected to strongly influence the composition of benthic foraminiferal 

assemblages and benthic foraminiferal accumulation rates. We studied export production over the last 12 

kyr at a sampling resolution of approximately 250-300 years through an investigation of bathyal benthic 

foraminiferal assemblages (>63 µm) at Ocean Drilling Program (ODP) Site 980 on the Feni Drift 

(55°29’N, 14°42’W, 2179 m water depth).   

During the last 12 kyr, faunas at Site 980 were dominated (~75%) by Cassidulina obtusa, 

Nonionella iridea, Bolivina difformis, Trifarina pauperata, Alabaminella weddellensis, Stainforthia 

fusiformis, Cassidulina laevigata and Eilohedra vitrea. The absolute and relative abundances and diversity 

of these and other species varied significantly. In the interval ~12-10 ka, A. weddellensis, S. fusiformis and 

T. pauperata had higher % abundance (named here ‘H10 species’), but this is not reflected in a higher 

accumulation rate, suggesting that surface productivity was low, at highly variable conditions. Species at 

lower % abundance during this time include B. difformis, C. laevigata, C. obtusa, E. vitrea and N. iridea 

(so-called ‘L10 species’). The ‘8.2 ka cold event’ was characterized by increased carbonate dissolution 

(reflected in decreases in the absolute abundance, benthic foraminifera accumulation rate, weight % coarse 

fraction, and presence of poorly preserved/fragmented benthic foraminifera). Peaks in the relative 

abundance of species which, in our opinion, exploited phytodetritus (‘phytodetritus species’: N. iridea, A. 

weddellensis, C. obtusa, and rare Epistominella exigua) occurred at 8.0 ka, 7.0 ka, 6.3-5.6 ka, 4.7 ka, 4.3-

3.4 ka and 2.4 ka. These peaks generally correspond to peaks in absolute abundance (number of specimens 

per gram, accumulation rate), indicating increases in the seasonality of export productivity. However, the 

‘phytodetritus species’ do not covary in absolute and relative abundance over the studied interval, 

suggesting that they have somewhat different ecological requirements.  
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There appears to be no simple relationship between changes in the degree of seasonality of export 

productivity (i.e., abundance of ‘phytodetritus species’) and records of palaeoclimatic/palaeoceanographic 

proxies, suggesting that bentho-pelagic coupling (arrival of food on the seafloor with local surface 

productivity) might not have been straightforward in this region. Site 980 is located in the 

hydrodynamically active area of Feni Drift, and during the Holocene, currents might have winnowed and 

removed fine-grained organic matter, making it unavailable to benthic organisms. Alternatively, there may 

have been changes in remineralization and/or mid-water competition for food, so that the fraction of the 

organic flux that reached the seafloor may have varied. Holocene benthic foraminiferal assemblages thus 

reflect highly dynamic conditions in export productivity and arrival of organic matter at the seafloor. 

 

Keywords: Bentho-pelagic coupling; seasonality of productivity; phytodetritus species 
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1. Introduction 

The Holocene (the last 11.7 kyr) saw relative climate stability compared to the last glacial period, 

although significant Holocene climate change occurred (e.g. Mayewski et al., 2004; Wanner et al., 2008, 

2011, 2015). The Holocene Thermal Maximum, due to orbital forcing, was followed by progressive 

cooling starting at ~5-4 ka (Renssen et al., 2012; Marcott et al., 2013; Wanner et al., 2008, 2015). 

Superimposed on this long-term trend there were (8-10) multi-decadal- to century-scale ice-rafting maxima 

(the so-called Bond cycles), by some interpreted as cooling events (Bond et al., 1997, 2001; Mayewski et 

al., 2004; Wanner et al. 2011, 2015). There has been considerable discussion whether these Holocene 

cycles had periodicities of ~1500 years, and whether they were global. They might have been largely 

restricted to the North Atlantic and surrounding areas (e.g. Wanner and Bütikofer, 2008; Wanner et al., 

2015), but potentially linked, coeval cooling events have been reported in Asia, North America and the 

Pacific Ocean (e.g. Goswami et al., 2006; Isono et al., 2009; Wanner et al., 2011, 2015). Suggested causes 

of the Bond cycles include solar irradiance changes, volcanic eruptions, changes in ocean meridional 

overturning circulation, and variations internal to the climate system (see Wanner et al., 2011, 2015). 

However, to complicate matters, there is no consensus whether the Bond cycles actually exist, with some 

suggesting that they are an artefact of under-sampling annual cycles (Wunsch, 2000), and others (e.g. 

Wanner et al. 2008; Obrochta et al., 2012) questioning their ubiquity, as well as their exact timing and 

periodicity. 

A great range of proxies are used to document various aspects of climate variability. Benthic 

foraminifera are an important component of modern ocean floor communities (e.g. Gooday et al., 1992; 

Gooday, 1999, 2003), and their distribution, diversity and species abundance in the fossil record have been 

used extensively as palaeoceanographic proxies (for reviews see Smart, 2002; Gooday, 2003; Jorissen et 

al., 2007; Gooday and Jorissen, 2012). Complex factors control the abundance and microhabitat 

distribution of benthic foraminifera, but it is generally accepted that the flux of organic matter and bottom 

and pore water oxygen concentrations are the major controlling variables in the food-limited deep-sea 
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environments (e.g., van der Zwaan et al., 1999; Jorissen et al., 1995, 2007). Additional factors such as 

bottom water hydrodynamics, carbonate saturation, and temperature may be important in specific settings 

(e.g. Bremer and Lohmann, 1982; Mackensen et al., 1995; Murray, 2001; Schönfeld, 2002; Jorissen et al., 

2007; Rasmussen and Thomsen, 2017). 

The flux of organic matter (food) from the euphotic zone to the deep ocean floor exerts a strong 

influence on the abundance, diversity and biomass of all deep-sea benthic organisms (e.g., Rowe, 1983, 

Gage and Tyler, 1991), including benthic foraminifera (e.g., Herguera and Berger, 1991; Altenbach et al., 

1999, Gooday, 2003). Benthic foraminifera show resource partitioning, i.e., they use different types of 

food in a non-competitive way (Murray, 2006). Their assemblage composition may be related to both the 

amount and quality of organic matter (e.g. Caralp, 1989; Altenbach et al., 1999; Fontanier et al., 2005), and 

whether or not the supply is seasonal or otherwise intermittent (Loubere and Fariduddin 1999; Sun et al., 

2006). Labile organic matter (phytodetritus) is delivered to the sea floor in seasonal pulses in many mid-

latitude areas (e.g. Billett et al., 1983; Rice et al., 1994; Smith et al., 1996), and phytodetritus abundance 

strongly influences the composition of benthic assemblages, including foraminifera (e.g., Gooday, 1988, 

1996; Gooday and Turley 1990; Ohga and Kitazato, 1997; Kitazato et al., 2000). This is particularly 

evident in the NE Atlantic, where some species of opportunistic benthic foraminifera respond rapidly to 

the presence of phytodetritus by feeding on the detritus, reproducing rapidly and building up large 

populations (e.g. Gooday 1988, 1993, 1996).  

In the abyssal NE Atlantic, where the overall flux of organic matter to the seafloor is fairly low 

despite high surface productivity, the ‘phytodetritus species’ are dominated by Epistominella exigua and 

Alabaminella weddellensis (e.g. Gooday 1988, 1993, 1996; Smart and Gooday, 1997). The abundance of 

these ‘phytodetritus species’ has been used to document variability in seasonally pulsed organic matter 

inputs across periods of climate change (e.g., deglaciation) (e.g., Smart et al., 1994, 2010; Thomas et al., 

1995; Thomas and Gooday, 1996; Nees et al., 1997; Nees and Struck, 1999; Smart, 2008; Diz and Barker, 

2016). 
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In the bathyal NE Atlantic, where the overall annual delivery of organic matter to the sea floor is 

higher (Fig. 1), the ‘phytodetritus species’ may be dominated by Nonionella iridea, A. weddellensis 

(Eponides pusillus of Gooday and Hughes, 2002) and Cassidulina obtusa (Gooday and Lambshead 1989; 

Mackensen et al., 1990; Lambshead and Gooday, 1990; Gooday and Hughes, 2002; Duchemin et al., 2005, 

2008). Nonionella iridea is associated with fresh phytodetritus in many regions (i.e., has green protoplasm 

even outside the photic zone) (Murray, 2006). The species responds opportunistically to phytodetritus 

(Gooday and Hughes, 2002; Duchemin et al., 2005, 2008; Alve, 2010), although evidence from 

experimental work and sediment data from the upper bathyal of Oslofjord, Norway indicate that it has its 

peak abundance in seasons without active deposition. The species may be linked more to refractory 

degraded organic matter and associated bacteria and other microbes rather than to fresh phytodetritus 

(Duffield et al., 2014, 2015). N. iridea may live in areas of active phytodetritus deposition, but in the 

upper, suboxic sediments below the actual phytodetritus layer (Murray, 2006). 

Stainforthia fusiformis is an opportunistic species and its abundance most likely reflects highly 

variable environmental conditions (Alve, 2003; Murray, 2006). It has been associated with physically 

disturbed sediment (Alve and Murray, 1997), low oxygen shelf and slope areas, hydrographic frontal 

regions (Scott et al., 2003), and availability of refractory, degraded organic matter (Duffield et al., 2015). 

Assemblage composition as well as benthic foraminiferal accumulation rates (BFARs) have been 

suggested to be a proxy for palaeoproductivity (e.g. Herguera and Berger, 1991), because benthic 

assemblages depend on the food flux from surface productivity. However, factors such as calibration, 

changes in remineralization rate of organic matter in the water column, oxygen levels, dissolution and 

taphonomic effects limit the use of BFAR in a quantitative sense (e.g., Jorissen et al., 2007). Only a very 

small (generally <1%) percentage of organic matter reaches the deep sea floor (e.g., Martin et al., 1987), so 

surface ocean and chemical and biological water-column processes materially affect the flux of organic 

material reaching the benthos. The amount of organic matter exported from the photic zone, first to the 

bottom of the mixed layer and then on to the sea floor, varies strongly with pelagic ecosystem composition, 
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and with the abundance of mid-water biota, so that climatic changes affecting these systems also affect the 

benthos (e.g., Thomas et al., 1995; Henson et al., 2012, Arndt et al., 2013). Furthermore, in 

hydrodynamically active regions (such as the drift setting of Site 980), phytodetritus is not simply 

transported vertically from surface to bottom, but may be deflected laterally, and/or concentrated in some 

areas (e.g., Murray, 2006), depending upon sea floor topography (Arreguin-Rodriguez et al., 2016) and 

current activity. Fine grained, low-density organic material may be winnowed by bottom currents, thus 

removed from availability for the benthos, and refractory organic matter is laterally transported, affecting 

BFAR as well as the abundance of such taxa as the high-food depending bolivinids. High abundances of 

bolivinids have been associated with high fluxes of laterally transported refractory organic matter in the 

present Bay of Biscay (Hess and Jorissen, 2009) and in the Oligocene Fuente Caldera section (Spain) 

(Fenero et al., 2012).  

In general, at a location such as Site 980, located in the hydrodynamically active area of Feni Drift, 

environmental factors other than vertical organic matter fluxes from surface productivity in the directly 

overlying waters may have been important for Holocene benthic foraminiferal faunas. Bentho-pelagic 

coupling may not have been straightforward, with a correlation between primary productivity and arrival 

of food to the seafloor not a simple logarithmical correlation function (Martin et al., 1987; Arndt et al., 

2013). Both assemblage composition and BFARs should be considered as proxies for arrival of organic 

matter at the seafloor, i.e., reflecting some combination of export and primary productivity influenced by 

water column processes, and we must keep this in mind while interpreting our faunal records for Site 980. 

The main aim of this study is to document the relationship between Holocene changes in the degree 

of seasonality of export productivity (i.e., abundance of ‘phytodetritus species’) at bathyal North Atlantic 

ODP Site 980 (55ºN, 14º42’W, 2179 m water depth), and compare it with published palaeoclimatic/ 

palaeoceanographic records at the same site, and with faunal records at other sites in the same general area 

(Thomas et al., 1995; Smart 2008). 
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2. Site location and oceanography 

The sediments for this study were sampled in cores from Ocean Drilling Program (ODP) Site 980 

(Hole 980B) on the Feni Drift, subpolar northeastern Atlantic Ocean (55º29’N, 14º42’W, 2179 m water 

depth) (Fig. 1). This site has been the subject of extensive investigations of Quaternary palaeoceanography 

and palaeoclimatology (e.g., McManus et al., 1999; Oppo et al., 1998, 2003, 2006, Benway et al., 2010, 

Stolz and Baumann, 2010). Today, surface waters at Site 980 lie in the path of the North Atlantic Current 

(NAC), which transports warm Gulf Stream water poleward (Fig. 1a). The North Atlantic subpolar gyre 

(SPG) occurs to the north of the area and the subtropical gyre (STG) lies to its south (Fig. 1a), with the 

Arctic Front (AF, the boundary separating the Arctic and Atlantic domains) lying near Greenland (Swift 

and Aagaard, 1981). During cold events of the last interglacial (MIS5), the SPG weakened and the AF may 

have reached Site 980 (Mokeddem et al., 2014). 

Deep waters at Site 980 are dominated by North Atlantic Deep Water (NADW), largely comprising 

Labrador Sea Water (LSW) with a small component of Iceland-Scotland Overflow Water (ISOW) (Fig. 

1a). The NADW in this area has lower oxygen concentrations than newly ventilated waters, due to the 

presence of relatively poorly ventilated, southerly derived Eastern Basin Deep Water (EBDW), comprising 

recirculated NADW (Curry et al., 1988) and Southern Ocean Water (SOW) (Lonsdale and Hollister, 

1979). 

During glacial and deglacial times, the deep waters contained a combination of northerly and 

southerly derived waters, with NADW replaced by the more shallow water mass named Glacial North 

Atlantic Intermediate Water (GNAIW; e.g., Oppo and Lehman, 1993; McManus et al., 1999, Howe et al., 

2016, Menviel et al., 2016). Reductions in northern-derived deep waters may have been associated with the 

presence of poorly ventilated EBDW (Oppo et al., 2006). Alternatively, both the northerly and the 

southerly sourced deep waters may have been reduced in volume, leading to a generally more poorly 
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ventilated Atlantic basin (Menviel et al., 2016). During the Holocene, NADW volume varied on centennial 

to millennial time scales, with reductions of NADW occurring at 9.3 ka, 8.0 ka, 5.0 ka and 2.8 ka (Oppo et 

al., 2003). 

Present average annual primary production estimates in the area, calculated using the Vertically 

Generalized Production Model (VGPM; Behrenfeld and Falkowski, 1997a,b) and SeaWiFS phytoplankton 

chlorophyll concentrations (Sun et al., 2006, fig. 3a; Corliss et al., 2009, fig. 1A), are in the range 200-225 

g C m-2 yr-1 (Fig. 1a). The area experiences strongly seasonal inputs of phytodetritus during the late 

spring/early summer, which exert a strong influence on benthic organisms, including benthic foraminifera 

(Gooday and Lambshead, 1989; Gooday and Hughes, 2002). The location of high phytodetritus 

productivity, however, varied from the last glacial maximum to today, with northward motion of the zone 

of highest productivity during deglaciation (Thomas et al., 1995; Nees et al., 1997).  

 

3. Chronology of ODP Hole 980B 

Age control for ODP Hole 980B is provided by monospecific planktic foraminifera accelerator 

mass spectrometry (AMS) 14C dates (Oppo et al., 2003), as recalibrated by Benway et al. (2010). Sample 

ages were interpolated from Benway et al. (2010), and updated ages have been calculated for the oxygen 

and carbon benthic foraminiferal isotope records of the 1.27-10.07 kyr interval (Oppo et al. 2003) and 

10.11-11.96 kyr interval (Oppo et al., 2007) (Fig. 2). There are radiocarbon age reversals in the upper 5 cm 

of the core (Oppo et al., 2013), so only data for samples older than 1.27 kyr (0.360 metres composite 

depth) are considered and plotted (Fig. 2). Therefore, the ages of the two youngest samples in our study (at 

0.045 mcd = 0.78 kyr and 0.155 mcd = 0.95 kyr) should be considered with caution. The differences in 

calendar ages between ages in Oppo et al. (2003) and those in Benway et al. (2010) are generally small for 

the interval 0.64-11.70 kyr (mean -0.054 kyr, n = 15). The sedimentation rates for the 1.27-11.66 kyr 

interval vary from 5.4 to 72.5 cm kyr-1 (mean 47.5 cm kyr-1, n = 122) (Fig. 3b). 
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4. Material and methods 

A total of 44 sediment samples from the 0.78-11.66 kyr interval were studied from ODP Hole 

980B, corresponding to a sampling resolution of approximately 250-300 years. The samples were dried, 

weighed and soaked in a 10% Calgon solution (sodium hexametaphosphate) to disaggregate the sediment. 

The samples were washed through a >63 µm sieve, then dried and weighed. Wherever possible, >250 

specimens of benthic foraminifera from each sample were picked and identified to species level in the >63 

µm size-fraction. The number of specimens per gram of dry bulk sediment (NPG) were calculated. In 

general, more than 200 specimens of benthic foraminifera per sample are needed to represent species 

diversity for Neogene assemblages (Thomas, 1985). Benthic foraminiferal species names follow the World 

Foraminifera Database (Hayward et al., 2018), and counts for studied samples are provided in the 

Supplementary material. 

No dry bulk density (DBD) data are available for the calculation of accumulation rates (number of 

specimens cm-2 kyr-1), so wet bulk density (WBD) data obtained by gamma-ray attenuation were used 

(Jansen et al., 2005; see also Stolz and Baumann, 2010). The accumulation rates (AR) of benthic 

foraminifera (>63 µm) (BFAR) were calculated as: number of specimens per gram of dry bulk sediment x 

linear sedimentation rate (cm/kyr) x WBD (g/cm3).  

In order to compare our BFAR data with those available from other sites, we must estimate the 

BFARs as based on DBD. In Hole 980A (also drilled at Site 980), some low resolution WBD and DBD 

data are available (Jansen et al., 1996, table 19). In samples 980A-1H-1, 75-77 cm (0.75 mbsf) and 980A-

1H-2, 75-77 cm (2.25 mbsf) the WBD is 1.500 g/cm3 and 1.521 g/cm3 respectively and the DBD is 0.761 

g/cm3 and 0.789 g/cm3 respectively (Jansen et al., 1996, table 19). Using the mean of this basic 

relationship (i.e., 1 g/cm3 WBD = 0.513 g/cm3 DBD), we tentatively estimated the DBD, and therefore 
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BFARs, for our samples. This results in an overall halving of the BFAR values compared with BFARs 

calculated using WBD.  

Data on benthic foraminiferal NPG, AR and % coarse fraction (>63 µm) are provided for all 

samples (Supplementary material). Some samples (at 0.045 mcd [0.78 ka], 0.155 mcd [0.95 ka], 0.525 mcd 

[2.06 ka], 1.735 mcd [8.16 ka], 1.785 mcd [8.45 ka], 1.825 mcd [8.69 ka], 2.225 mcd [10.25 ka]) contained 

no or very few benthic foraminifera (0-13 specimens) (Table 1) thus were excluded from the percentage 

and diversity calculations. For each sample, the diversity was recorded in terms of the Fisher’s alpha index 

(Fisher et al., 1943). The percentage of planktic foraminiferal fragments in the >63 µm size-fraction 

(calculated as the percentage of planktic foraminiferal test fragments relative to whole planktic 

foraminifera plus test fragments on total counts of >300 specimens), and the percentage of benthic 

foraminifera in the >63 µm size-fraction relative to the total foraminiferal assemblage (benthic + planktic) 

were also recorded. 

‘Phytodetritus species’ (associated with seasonally pulsed organic matter fluxes) are defined as the 

combined percentages of Cassidulina obtusa, Nonionella iridea, Alabaminella weddellensis and 

Epistominella exigua (e.g. Gooday 1988; Thomas et al., 1995; Gooday and Hughes, 2002; Smart, 2008). 

‘High food species’ (associated with sustained organic matter fluxes) are defined as the % sum of 

Abditodentrix spp., Bolivina spp., Bolivinellina spp., Brizalina spp., Bulimina spp., Globobulimina spp., 

Melonis spp., Stainforthia spp., Trifarina pauperata and Uvigerina spp. (e.g. Lutze and Coulbourn, 1984; 

Altenbach et al., 1999).  

In order to identify groupings of species, a Principal Components Analysis (PCA) with VARIMAX 

rotation was performed on the percentage species data and two datasets were considered (n = 37). First, the 

percentage data was reduced to include species that were present in at least three samples and percentages 

were >2% in at least one sample. This resulted in 30 species, but the Kaiser-Meyer-Olkin (KMO) Measure 

of Sampling Adequacy value was 0.391, which is considered unacceptable (e.g. Dziuban and Shirkey, 
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1974; Cerny and Kaiser, 1977). Second, the percentage data was reduced to include the top 23 ranked 

species with percentages of >0.5% of the total, resulting in an unacceptable KMO value of 0.368 (e.g. 

Dziuban and Shirkey, 1974; Cerny and Kaiser, 1977). Given these results, we decided not to pursue PCA 

for interpreting the dataset. 

 

5. Results 

The % coarse fraction (>63 µm) is dominated by planktic foraminifera (+ fragments), benthic 

foraminifera, and occasional radiolarians and sponge spicules (Fig. 3). The % coarse fraction is usually 

<6% by weight, with strong fluctuations between 7.7 kyr and 12 kyr (Fig. 3c). The % planktic 

foraminiferal fragments (>63 µm) varied over the last 12 kyr (mean = 36.0%, n = 37) with peaks in 

fragmentation at 7.7 ka and 9.3 ka (Fig. 3c). The interval <2 ka is not considered because no planktic 

foraminifera (or fragments) were recorded. 

The benthic foraminifera are dominated by calcareous species, mostly well preserved and, in most 

samples, without apparent signs of dissolution or shell breakage. However, samples with poorly preserved 

and fragmented benthic foraminifera occur in the interval deposited between 8.5-8.2 ka, and samples with 

some poorly preserved/fragmented benthic foraminifera at 10.3, 9.3 and 7.7 ka. The % benthic 

foraminifera (of total foraminifera) fluctuated between ~20% and 0% over the last 12 kyr (Fig. 3e). The 

top 10 ranked benthic foraminiferal species (by relative abundance), based on the total number of all 

species present in all 44 samples, are given in Table 2.  

Abundance and diversity information is presented in Fig. 4. Diversity (Fisher’s alpha index) 

fluctuated over the last 12 kyr ,with an overall trend towards lower values (Fig. 4h), and with higher values 

between 11.7-7.7 ka than between 7.6-2 ka. The diversity values are negatively correlated with BFAR, the 

AR of ‘phytodetritus species’, and % ‘phytodetritus species’ (Table 3). In other words, when diversity is 

higher, BFARs (total) and AR and % of ‘phytodetritus species’ are low (lower diversity at high 
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phytodetritus abundance), as also observed elsewhere, e.g. on Shatksy Rise in the Pacific (Ohkushi et al., 

2000). 

The absolute abundances (numbers of specimens per gram, NPG) and benthic foraminiferal 

accumulation rates (number of specimens cm-2 kyr-1, BFAR) fluctuated strongly over the last 12 kyr (Fig. 

4a, e). The fluctuations in NPG and BFAR are very similar. Peaks in BFARs (>200,000 cm-2 kyr-1) 

occurred at 10.0 ka, 9.0 ka, 7.0 ka, 5.9-5.3 ka and 4.0-3.7 ka (Fig. 4e). There are significant positive 

correlations between the % coarse fraction and NPG and BFAR, but not with % benthics or % planktic 

foraminiferal fragments (Table 3). There are positive correlations between the % benthics and NPG, 

BFAR, but not with % planktic foraminiferal fragments (Table 3). 

We use the sum in relative abundance of N. iridea, A. weddellensis, C. obtusa (and rare E. exigua) 

as ‘phytodetritus species’ (mean 41.5%). The ‘phytodetritus species’ fluctuated between ~12 kyr and ~2 

kyr with a general trend towards higher percentages (from ~25% to ~50%) peaking at around ~ 3.8 ka (Fig. 

4c). Peaks in the % ‘phytodetritus species’ (>45%) occurred at 8.0-7.9 ka, 7.0 ka, 6.3-5.6 ka, 4.7 ka, 4.3-

3.4 ka and 2.4 ka (Fig. 4c). The % ‘phytodetritus species’ shows a significant positive correlation with % 

coarse fraction, and is weakly positively correlated with % planktic foraminiferal fragments and % 

benthics (Table 3). Epistominella exigua constitutes a very small proportion of the ‘phytodetritus species’, 

with abundances of <2% between 11.7 and 9.6 kyr, and it is absent between 9.3 kyr and 2.2 kyr. The 

relative abundances of C. obtusa, N. iridea and A. weddellensis do not covary throughout the studied 

interval (Fig. 4d), and the patterns in their absolute abundances (NPG and AR) are very similar to those in 

the NPG and AR of total foraminifera. Also, the NPG and AR of ‘phytodetritus species’ and the NPG and 

AR of foraminifera calculated on a ‘phytodetritus species’-free basis show very similar trends, and are 

strongly positively correlated (Table 4). Both the NPG and AR of ‘phytodetritus species’ are significantly 

correlated with the % coarse fraction (Table 3).   
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The percentage fluctuations of the most common benthic foraminifera (each comprising a mean of 

>5% in all samples throughout the studied interval) are shown in Fig. 5, and their AR in Fig. 6. The 

relative abundance of C. obtusa increased over the last 12 kyr from ~10% to ~40% (Fig. 5a). The relative 

abundance of N. iridea fluctuated from ~2% to ~20% (Fig. 5b). The abundance of B. difformis fluctuated 

over the last 12 kyr, with an overall decrease from 6.7 kyr (16.6%) to 2.2 kyr (7.2%) (Fig. 5c). The 

percentage of T. pauperata fluctuated (~11-1%) with peaks at 10.6 ka (15.1%) and 11.3 ka (12.3 %) (Fig. 

5d). The relative abundance of A. weddellensis fluctuated, with higher abundances between 11.7-10 kyr, 

and values increased from ~2% to 6% from 7.7-2.2 kyr (Fig. 5e). The relative abundance of S. fusiformis 

fluctuated, and decreased from ~20% to ~5% over the last 12 kyr with higher abundances at 11.7-10.8 ka 

(Fig. 5f). The abundance of C. laevigata increased over the last 12 kyr from 0-2% to ~9% (Fig. 5g). E. 

vitrea had abundances of <12% throughout the studied interval (Fig. 5h). 

Three common species (A. weddellensis, S. fusiformis and T. pauperata ) show overall higher 

relative abundance in the early part of the record (>10 ka), where BFAR is low; we call these the ‘H10 

species’ (i.e. species with higher % abundance before 10 ka). Their combined percentages are ~20-30% 

from 11.7-10.6 kyr, ~20-6% from 10-2.2 kyr (Fig. 7a). Five common species (B. difformis, C. laevigata, C. 

obtusa, E. vitrea and N. iridea,) show overall higher relative abundance in the later part of the record (<10 

ka); we call these the ‘L10 species’ (i.e. species with lower % abundance before 10 ka). Their combined 

percentages are ~20-30% from 11.7-10.6 kyr and 50-70% from 10-2.2 kyr (Fig. 7b). The AR of both ‘H10 

species’ and ‘L10 species’ were low before 10 ka (Fig. 7c, d), when overall BFARs were also low. The 

general fluctuations of NPG and AR of all species, including the ‘H10 species’ and ‘L10 species’, are very 

similar to the variations of NPG and AR of total foraminifera. 

The relative abundance of ‘high food species’ (combined % of Abditodentrix spp., Bolivina spp., 

Bolivinellina spp., Brizalina spp., Bulimina spp., Globobulimina spp., Melonis spp. Stainforthia spp., T. 

pauperata and Uvigerina spp.) fluctuated between ~20-35% over the studied interval (Fig. 8b). There is no 

significant correlation between the % of ‘high food species’ and BFARs (Fig. 8, Table 3). The percentage 
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of ‘high food species’, calculated on a ‘phytodetritus species’-free basis, fluctuated over the studied 

interval, but a general trend towards higher values in the interval 11.7-6.7 kyr and lower values in the 

interval 6.3-2.2 kyr (although variable) is evident (Fig. 8c). 

 

6. Discussion 

At bathyal ODP Site 980, NE Atlantic Ocean the absolute and relative abundances, accumulation 

rates, and diversity of benthic foraminifera fluctuated significantly during the last 12 kyr. The faunas were 

dominated (~75%) by C. obtusa, N. iridea, B. difformis, T. pauperata, A. weddellensis, S. fusiformis, C. 

laevigata and E. vitrea. In the interval before 10 ka, common species with higher % abundance included A. 

weddellensis, S. fusiformis and T. pauperata (‘H10 species’), and common species with lower % 

abundance are represented by B. difformis, C. laevigata, C. obtusa, E. vitrea and N. iridea (‘L10 species’). 

This intervals is marked by low BFARs, suggesting that export productivity overall was low. The high 

abundance of the opportunistic species S. fusiformis indicates potentially highly variable bottom 

conditions.  

The species composition and abundance of benthic foraminifera are very similar to those of modern 

faunas described at nearby BENBO Site C (57ºN,12ºW, 1913-1980 m water depth, Gooday and Hughes, 

2002), although, according to SeaWiFS phytoplankton chlorophyll concentrations (Sun et al., 2006, fig. 3a; 

Corliss et al., 2009, fig. 1A), productivity presently is slightly higher at BENBO Site C (225-275 g C m-2 

yr-1) than at Site 980 (200-225 g C m-2 yr-1) (Fig. 1). At the BENBO C site, two ‘phytodetritus species’ 

(Nonionella iridea and Eponides pusillus [= A. weddellensis of this study]) were common in ‘live’ and 

‘dead’ assemblages. Cassidulina obtusa was abundant, but mainly in the ‘dead’ assemblages, possibly 

because its main period of test production occurred after the July sampling period (Gooday and Hughes, 

2002). In the ‘live’ (stained) assemblages, N. iridea increased from 5.6% to 20.4% and E. pusillus from 

1.4% to 11.0% from May (no phytodetritus) to July (phytodetritus present), demonstrating the close link 
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between phytodetritus deposition and the abundance of these species (Gooday and Hughes, 2002). The 

‘dead’ (unstained) assemblages were dominated by calcareous species, with N. iridea, C. obtusa and E. 

pusillus as first, second and third ranked species in abundance in the May and July samples (Gooday and 

Hughes, 2002). The combined percentages of these species were slightly lower in the May samples (44.6-

46.7%) than in the July samples (48.8-48.9%). Removing agglutinated species with low preservation 

potential, the combined abundance of these three ‘phytodetritus species’ is >45% in the ‘dead’ assemblage 

(Gooday and Hughes, 2002, table 6).  

The peaks in the % ‘phytodetritus species’ in our Site 980 record (>45%) at 8.0 ka, 7.0 ka, 6.3-5.6 

ka, 4.7 ka, 4.3-3.4 ka and 2.4 ka (Fig. 4f), correspond to increases in the AR of ‘phytodetritus species’. 

These peaks could reflect increases in the seasonality of productivity, i.e., the difference in productivity 

between, e.g., spring-fall or winter-summer increases (even at the same overall annual productivity), so 

that more organic matter falls in less time, and/or the productivity during the spring bloom increased. 

However, the situation is almost certainly more complex, because these opportunistic ‘phytodetritus 

species’ do not covary over the study interval, probably indicating that they have somewhat different 

ecological requirements and preferences for type of/degree of seasonality of phytodetritus: E. pusillus 

occurred physically embedded in phytodetritus, whereas N. iridea occurred in the sediment surrounded by 

an agglutinated cyst (Gooday and Hughes, 2002).  

The lack of covariance in abundance between two well-known ‘phytodetritus species’, E. exigua 

and A. weddellensis, has been associated with different ecological requirements and preferences for type 

of/degree of seasonality of phytodetritus (e.g. Thomas et al., 1995; Yasuda, 1997; Nees and Struck 1999, 

Ohkushi et al. 2000, Smart, 2008). King et al. (1998) demonstrated that A. weddellensis was more common 

than E. exigua in dense, laminated diatom mats in the Neogene equatorial Pacific. Also, E. exigua has been 

described as more related to areas of high seasonality, whereas A. weddellensis is more associated with 

regions of higher productivity (Fariduddin and Loubere, 1997; Sun et al., 2006). In our data, the relative 
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abundance of this species also appears to be related to high % of ‘high food species’ (although not high AR 

of these taxa) in the interval older than 10 ka.  

Eilohedra vitrea (= Epistominella vitrea), which is common at Site 980, has been linked to high 

productivity areas with seasonal inputs of organic material (e.g. Alve and Bernhard, 1995; Duchemin et al., 

2007; Phipps et al., 2012). In addition, an assemblage comprising the opportunistic species, N. iridea and 

E. vitrea was more related to pulsed seasonal food supply than temperature over the last glacial in the 

central North Atlantic (Rasmussen and Thomsen, 2017). At Site 980, the correlation between the % E. 

vitrea and % ‘phytodetritus species’ is not significant (Table 4), although there is a good correspondence 

of fluctuations in the AR of E. vitrea and the AR of ‘phytodetritus species’. Bolivina difformis, which is 

also common at Site 980, was found to peak only after the spring bloom in the North Atlantic (550 m water 

depth, Bay of Biscay), suggesting it prefers to feed on material typical of spring blooms (e.g. diatoms, 

coccolithophores, and other microalgae) (Fernandez et al., 1995; Fontanier et al., 2003). Like E. vitrea, the 

correlation between the % B. difformis and % ‘phytodetritus species’ is not strongly significant (r = 0.067, 

p = 0.692, n = 37) (Table 4), but there is a good correspondence of increases and decreases in the AR of E. 

vitrea and the AR of ‘phytodetritus species’ throughout the Holocene. In bathyal areas (e.g. Sagami Bay, 

Japan) other bolivinid species (Bolivina pacifica) have been linked to seasonal fluxes of organic matter 

(Ohga and Kitazato, 1997), but lateral transport of more refractory material (as described above)may have 

affected the abundance of this species. 

The significant correlations between NPG and BFARs and the dissolution proxy, % coarse fraction 

(e.g. Volbers and Henrich, 2002), suggests that dissolution might have affected the abundances of 

foraminifera at ODP Site 980, but this seems rather unlikely because most samples contain well preserved, 

non-fragmented benthic foraminiferal specimens. The % coarse fraction is a reliable dissolution proxy only 

if the ratio between nannofossils and microfossils remains constant through time (Volbers and Henrich, 

2002). Coccolith AR at ODP Site 980 were high and relatively stable during the Holocene, with the highest 

AR in the early and late Holocene (Berger et al., 2014). Coccolith AR and BFARs do not appear to covary 
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during the Holocene (Fig. 9). Other dissolution indicators (e.g., % benthics and % planktic foraminiferal 

fragments) are not correlated with the NPG and BFAR. Furthermore, there is no significant correlation 

(Table 3) or direct correspondence between increases or decreases in NPG and increases or decreases in 

sediment AR, suggesting that the NPG fluctuations are caused by productivity changes of benthic 

foraminifera and not by variations in the dilution of the benthic foraminifera with terrigenous material or 

planktic foraminifera. The only exceptions of good preservation are in the intervals 8.5-8.2 ka where the 

benthic foraminifera are poorly preserved and fragmented and at 10.3, 9.3 and 7.7 ka where samples 

contain some poorly preserved/fragmented benthic foraminifera; these periods are cold intervals (Bond et 

al., 1997, 2001; Mayeweski et al., 2004; Wanner et al. 2011, 2015).  

The %, NPG and AR of ‘phytodetritus species’ are significantly correlated with the % coarse 

fraction, and weakly with % benthics and % planktic foraminiferal fragments. Variability in bottom 

currents during the Holocene may have been responsible to varying extents for winnowing the organic 

matter, or there may have been fluctuations in the extent of mid-water competition for food. 

Comparing the AR of ‘phytodetritus species’ and the AR of benthic foraminifera calculated on a 

‘phytodetritus species’ -free basis provides useful insights in the relative contribution of seasonally driven 

or more sustained fluxes of organic carbon, particularly in abyssal areas (Diz and Barker, 2016). The AR 

of ‘phytodetritus species’ compared with that of ‘other’ foraminifera (calculated on a ‘phytodetritus 

species’-free basis) covary strongly throughout the Holocene, suggesting that most benthic foraminifera at 

this site are influenced by seasonal inputs of organic matter, although carbonate dissolution cannot be ruled 

out. 

The BFAR values at ODP Site 980 (as estimated for DBD) over the last 12 kyr (mean 57529 cm-2 

kyr-1, n = 44, including zeros) are considerably higher than at nearby sites in the NE Atlantic, e.g., at 

Biogeochemical Ocean Flux Studies (BOFS) cores 5K (50°N, 21°W, water depth 3547 m; mean 1583 cm-2 

kyr-1, n = 66)) and 14K (58°N, 19°W, water depth 1756 m, mean 8152 cm-2 kyr-1, n = 36) (Thomas et al., 
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1995), and core 13078#16 (48°49.91 N, 16°29.94 W, water depth 4844 m; mean 1135 cm-2 kyr-1, n = 41) 

(Smart, 2008) (Fig. 1, Fig. 10c). This difference remains when BFARs are scaled with water depth (i.e., 

calculated as BFAR multiplied by water depth, BFAR*Z) (Herguera and Berger, 1991) (Fig. 10d). The 

NPG, however, at ODP Site 980, are generally lower than at BOFS cores 5K and 14K ,and higher than 

core 13078#16.  

The higher BFARs at ODP Site 980 as compared with those at the nearby sites are thus due to the 

higher sedimentation rates in the Feni Drift region, and indicate that in general organic matter was not 

removed significantly from the site. The peaks in BFARs might reflect times of increased lateral current 

transport bringing in organic matter, or even transported benthic foraminifera. We think the latter option 

less probable because the foraminifera do not show evidence of transportation, but are – on the contrary –

well preserved, unabraded, and not size-sorted. Regional differences in productivity, as reflected in the 

BFARs, could be linked to the position of the Arctic Front (AF), which may have varied and reached the 

area of Site 980 during Holocene cold intervals, as it did during cold intervals close to the end of the last 

interglacial (MIS5) (Mokeddem et al., 2014).  

There is no straightforward relationship between the Site 980 benthic foraminiferal faunas and the 

benthic foraminiferal stable isotope records (Oppo et al., 2003, 2007). Using benthic 13C values, Oppo et 

al. (2003) suggested that significant changes occurred in NADW formation during the Holocene at Site 

980. They recognised reductions of NADW (as recognized by decreases in benthic foraminiferal 13C) at 

9.3 ka, 8.0 ka, 5.0 ka and 2.8 ka (Fig. 2), with a decreasing trend of NADW beginning at 6.5 ka. General 

decreases in the NPG and BFAR coincide with intervals of reduced NADW.  

Only small variations occur in benthic 18O values throughout the studied interval, with more 

positive values at 12-11.5 ka (Younger Dryas). During the Younger Dryas, the intensity of Atlantic 

meridional overturning circulation (AMOC) decreased (e.g., Boyle and Keigwin, 1987; Evans and Hall, 
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2008; Lynch-Stieglitz et al. 2011). The % abundance of S. fusiformis was higher during and following the 

Younger Dryas compared with the rest of the Holocene.  

The increased % of S. fusiformis following and during the Younger Dryas is not reflected in higher 

AR of S. fusiformis or BFARs, suggesting export productivity was low, at highly variable conditions. 

During this interval, the so-called ‘H10 species’ (T. pauperata, S. fusiformis and A. weddellensis) had 

higher % abundances, which may suggest that they are all opportunistic species, although at lower verall 

export productivity (as reflected in low BFARs). The position of the Arctic Front (AF) may have shifted 

southwards reaching the area of Site 980 during the Younger Dryas, as it did during cold intervals of the 

last interglacial (MIS5) (Mokeddem et al., 2014). The % of ice-rafted debris (IRD) at Site 980 was higher 

during the Younger Dryas (McManus et al., 1999, 2004), thus the site may have had some ice cover, so 

phytodetritus blooms were less prevalent and, as a consequence, the non-phytodetritus taxa had higher 

percentages. Ice cover could have affected the type of phytodetrital delivery to the seafloor, or possibly 

phytodetritus was more concentrated in shorter time periods, affecting the benthic foraminiferal 

assemblage in favour of the ‘H10 species’. 

We find no straightforward relationship between the benthic foraminiferal faunal fluctuations at 

ODP Site 980 and the so-called Bond cycles (Bond et al., 1997, 2001), keeping in mind there is no 

consensus of opinion as to whether the Bond cycles actually exist (e.g. Wunsch, 2000; Wanner et al. 2008; 

Obrochta et al., 2012). Increases in carbonate dissolution, reflected in decreases in the NPG, BFAR and % 

coarse fraction, and poorly preserved/fragmented benthic foraminifera occur during the ‘8.2 ka cold event’ 

which has been linked to reduced Atlantic meridional overturning circulation due to freshwater pulses 

from the melting Laurentide ice sheet (e.g. Kleiven et al. 2008; Wiersma et al. 2011). Samples from other 

cold intervals at 10.3, 9.3 and 7.7 ka also contain some poorly preserved/fragmented benthic foraminifera 

(Bond et al., 1997, 2001; Mayeweski et al., 2004; Wanner et al. 2011, 2015). Yasuhara et al. (2014) 

suggested that the diversity of deep-sea ostracods and foraminifera in the North Atlantic over the last 20 

kyr is linked to changes in AMOC variability (specifically bottom-water temperature), with increased 
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diversity during Heinrich 1, the Younger Dryas and the 8.2 ka event. We did not find a simple relationship 

between benthic foraminiferal diversity changes (alpha index) and potential AMOC variability (reflected 

in benthic 13C values, Oppo et al., 2003), bottom-water temperature (broadly reflected in 18O values, 

Oppo et al., 2003, 2007) and Bond cycles. In our data, however, alpha diversity was high during the low 

abundance interval of the Younger Dryas. 

 

 

7. Conclusions 

(1) The absolute and relative abundances and diversity of benthic foraminifera varied significantly during 

the Holocene (last 12 kyr) at bathyal ODP Site 980. 

(2) Peaks in the relative abundance of ‘phytodetritus species’ (combined % of N. iridea, A. weddellensis, 

C. obtusa, and rare E. exigua) occurred at 8.0 ka, 7.0 ka, 6.3-5.6 ka, 4.7 ka, 4.3-3.4 ka and 2.4 ka. These 

peaks generally correspond to peaks in absolute abundance (number of specimens per gram, accumulation 

rate) indicating that these are intervals of increases in the seasonality of productivity.  

(3) The absolute and relative abundance of ‘phytodetritus species’ did not covary during the Holocene, 

suggesting that they have different ecological requirements. 

(4) There appears to be no simple relationship between changes in seasonality of export productivity and 

palaeoclimatic/palaeoceanographic records, such as variations in AMOC and the so-called Bond cycles. 

(5) Bentho-pelagic coupling to local surface productivity might not be straightforward in a sediment drift 

setting, and it may have changed over time, e.g. through changes in the composition of planktonic 

ecosystems and/or current intensity. We speculate that currents at some times winnowed and removed fine-

grained organic matter, so that it was not available to the benthic organisms, or that there may have been 

changes in mid-water competition for food, interfering with food fluxes to the seafloor.  
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(6) Between 11.7-10.8 ka (following the Younger Dryas), the % opportunistic species S. fusiformis 

increased, but not its AR, or BFARs, signifying surface productivity was low at highly fluctuating 

conditions, but the low overall BFARs may also have been caused by increased winnowing of organic 

material. 

(7) Between ~12-10 ka, A. weddellensis, S. fusiformis and T. pauperata (so-called ‘H10 species’) had 

higher % abundances, and B. difformis, C. laevigata, C. obtusa, E. vitrea and N. iridea had lower % 

abundance (so-called ‘L10 species’). 

(8) During the ‘8.2 ka cold event’ and possibly less pronounced cold events carbonate dissolution 

increased. 

(9) Overall, the benthic foraminiferal faunas at ODP Site 980 reflect highly dynamic conditions in export 

productivity and arrival of organic matter at the seafloor during the Holocene. 
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Appendix A. Benthic foraminiferal taxonomic list 

The benthic foraminiferal species mentioned in the text, including original names, are listed below. 

Alabaminella weddellensis (Earland) = Eponides weddellensis Earland, 1936. 

Bolivina difformis (Williamson) = Textularia variabilis var. difformis Williamson, 1858. 
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Cassidulina obtusa Williamson, 1858. 

Cassidulina laevigata d’Orbigny, 1826. 

Eilohedra vitrea (Parker) = Epistominella vitrea Parker, 1953. 

Epistominella exigua (Brady) = Pulvinulina exigua Brady, 1884. 

Nonionella iridea Heron-Allen and Earland, 1932. 

Stainforthia fusiformis (Williamson) = Bulimina pupoides d’Orbigny var. fusiformis Williamson, 1858. 

Trifarina pauperata (Heron-Allen and Earland) = Uvigerina angulosa Williamson var. pauperata Heron-

Allen and Earland, 1932. 

 

TABLES 

Table 1. List of samples, ages and number of foraminifera studied from ODP Hole 980B. Shaded samples 

contained too few benthic foraminifera to be included in the % calculations. 

 

Table 2. Top 10 ranked species (in all samples) in ODP Hole 980B. 

 

Table 3. Correlation coefficients (r) and significance (p) values of species and other variables discussed in 

text in ODP Hole 980B. 

 

Table 4. Correlation coefficients (r) and significance (p) values of species and other variables discussed in 

text in ODP Hole 980B. 

 



 24 
FIGURES 

Fig. 1. Location of ODP Site 980, NE Atlantic Ocean, and of other sites mentioned in text: BENBO Site C 

(Gooday and Hughes, 2002), BOFS cores 5K and 14K (Thomas et al., 1995) and BENGAL core 13078#16 

(Smart, 2008). (a) Surface currents are shown as dashed arrows and red text (red = warm subtropical 

waters, orange = cool subpolar waters); NAC = North Atlantic Current, NC = Norwegian Current, SPG = 

subpolar gyre, STG = subtropical gyre. Deep water currents are shown as blue solid arrows and blue text 

(LSW: Labrador Sea Water, ISOW: Iceland-Scotland Overflow Water, EBDW: Eastern Basin Deep 

Water). Satellite-derived estimates of North Atlantic mean annual productivity (g C m-2 year-1) based on 

SeaWiFS observations (Sun et al., 2006, fig. 3a; Corliss et al., 2009, fig. 1A). (b) Bathymetry of the NE 

Atlantic showing location of sites (modified after Lampitt et al., 2001 and Smart, 2008). 

 

Fig. 2. (a) Benthic 18O records for ODP Hole 980B (left axis) (Oppo et al., 2003, 2007) compared with 

oxygen isotope data from the Greenland Ice Sheet Project 2 (GISP2) ice core (right axis) (Dansgaard et al., 

1993; deMenocal, 2001, fig. 2A), (b) benthic 13C records for ODP Hole 980B (Oppo et al., 2003, 2007), 

(c) Percentage of lithic grains (ice-rafted debris, 63-150 µm size range) from stack of cores MC52-

V29191+MC21-GGC22 (4 records) showing North Atlantic Bond events (numbered) (Bond et al., 2001, 

fig. 2). Shading in (b) shows low 13C events and possible correlative events in the other records; 

rectangles, denote extreme winter-like conditions from GISP2 (Oppo et al., 2003, fig 1; O’Brien, et al. 

1995).  

 

Fig. 3. Age-depth plot, sediment accumulation rate (cm/kyr), % weight >63 µm size-fraction, % planktic 

foraminiferal fragments and % benthic foraminifera in ODP Hole 980B. Arrows in (e) indicate samples 

that contained no or too few benthic foraminifera (0-13 specimens) to be used for percentage calculations 

(shown by gaps in the record). 
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Fig. 4. Number of specimens per gram (NPG), NPG of ‘phytodetritus species’ (sum of N. iridea, A. 

weddellensis, C. obtusa, and E. exigua), % ‘phytodetritus species’, % of individual ‘phytodetritus species’, 

benthic foraminiferal accumulation rates (BFAR), accumulation rates (AR) of ‘phytodetritus species’, AR 

of benthic foraminifera calculated on a ‘phytodetritus species’-free basis, and alpha index in ODP Hole 

980B. ARs were calculated using WBD data (all data points included). Gaps in the % and alpha index 

records indicate samples that contained no or too few benthic foraminifera (0-13 specimens) to be used for 

percentage calculations. Arrows in (c) show peaks in ‘phytodetritus species’ (>45%, dashed horizontal 

line), and arrows in (e) show peaks in BFARs (>200,000 cm-2 kyr-1). 

 

Fig. 5. Relative abundances (%) of the most common species in ODP Hole 980B. Gaps in the % records 

indicate samples that contained no or too few benthic foraminifera (0-13 specimens) to be used for 

percentage calculations. 

 

Fig. 6. Absolute abundances (AR, accumulation rates – number of specimens cm-2 kyr-1) of the most 

common species in ODP Hole 980B. ARs were calculated using WBD data (all data points included). 

 

Fig. 7. (a) Relative abundances of ‘H10 species’ (i.e., species with higher % abundance before 10 ka) 

(combined % of A. weddellensis, S. fusiformis and T. pauperata), and ‘L10 species’ (i.e., species with 

lower % abundance before 10 ka) (combined % of B. difformis, C. laevigata, C. obtusa, E. vitrea and N. 

iridea). Gaps in the % records indicate samples that contained no or too few benthic foraminifera (0-13 

specimens) to be used for percentage calculations. ARs were calculated using WBD data (all data points 

included). 
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Fig. 8. (a) Comparison between BFARs (total) and accumulation rates of ‘high food species’ (sum of 

Abditodentrix spp., Bolivina spp., Bolivinellina spp., Brizalina spp., Bulimina spp., Globobulimina spp., 

Melonis spp. Stainforthia spp., T. pauperata and Uvigerina spp.), (b) relative abundances (%) of ‘high 

food species’, and (c) % of ‘high food species’ calculated on a ‘phytodetritus species’-free basis in ODP 

Hole 980B. ARs were calculated using WBD data (all data points included). Gaps in the % records 

indicate samples that contained no or too few benthic foraminifera (0-13 specimens) to be used for 

percentage calculations. 

 

Fig. 9. Comparison between (a) BFARs (calculated using WBD data), and (b) coccolith accumulation rates 

(AR, calculated using WBD data) (modified after Berger et al., 2014, fig. 10c) in ODP Site 980. Arrows in 

(a) show peaks in BFARs (>200,000 cm-2 kyr-1). 

 

Fig. 10. (a) Comparisons of BFARs between ODP Hole 980B (calculated using wet bulk density, WBD), 

BOFS cores 5K and 14K (Thomas et al., 1995), and BENGAL core 13078#16 (Smart, 2008). Note 

logarithmic scale. (b) Comparisons of BFAR*Z index (calculated as BFAR multiplied by water depth, 

Herguera and Berger, 1991) between ODP Hole 980B (calculated using WBD), BOFS cores 5K and 14K 

(Thomas et al., 1995), and BENGAL core 13078#16 (Smart, 2008). Note logarithmic scale. (c) and (d) 

same as (a) and (b) respectively, apart from BFARs in ODP Hole 980B were calculated using estimated 

dry bulk densities (DBD). 
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Table 1. Smart et al. 

Sample 

(Site-core-section, interval 

[cm]) 

Metres 

composite 

depth (mcd) 

Age 

(kyr) 

Total no. 

benthic 

foraminifera 

counted 

980B-1H-1, 4-5 0.045 0.78 6 

980B-1H-1, 15-16 0.155 0.95 0 

980B-1H-1, 52-53 0.525 2.06 0 

980B-1H-1, 55-56 0.555 2.20 391 

980B-1H-1, 60-61 0.605 2.44 282 

980B-1H-1, 65-66 0.655 2.68 283 

980B-1H-1, 72-73 0.725 3.04 274 

980B-1H-1, 75-76 0.755 3.18 292 

980B-1H-1, 80-81 0.805 3.37 435 

980B-1H-1, 88-89 0.885 3.73 279 

980B-1H-1, 90-91 0.905 3.85 297 

980B-1H-1, 92-93 0.925 3.97 307 

980B-1H-1, 95-96 0.955 4.15 278 

980B-1H-1, 97-98 0.975 4.27 290 

980B-1H-1, 99-100 0.995 4.40 276 

980B-1H-1, 103-104 1.035 4.64 306 

980B-1H-1, 105-106 1.055 4.75 300 

980B-1H-1, 112-113 1.125 5.07 326 

980B-1H-1, 114-115 1.145 5.16 319 
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980B-1H-1, 120-121 1.205 5.55 302 

980B-1H-1, 125-126 1.255 5.91 291 

980B-1H-1, 130-131 1.305 6.28 286 

980B-1H-1, 136-137 1.365 6.69 325 

980B-1H-1, 140-141 1.405 6.85 274 

980B-1H-1, 145-146 1.455 7.05 337 

980B-1H-2, 8-9 1.585 7.56 293 

980B-1H-2, 13-14 1.635 7.75 182 

980B-1H-2, 18-19 1.685 7.92 289 

980B-1H-2, 20-21 1.705 7.99 390 

980B-1H-2, 23-24 1.735 8.16 13 

980B-1H-2, 28-29 1.785 8.45 2 

980B-1H-2, 32-33 1.825 8.69 0 

980B-1H-2, 37-38 1.875 8.99 283 

980B-1H-2, 43-44 1.935 9.34 92 

980B-1H-2, 48-49 1.985 9.56 272 

980B-1H-2, 52-53 2.025 9.68 314 

980B-1H-2, 63-64 2.135 10.00 301 

980B-1H-2, 72-73 2.225 10.25 10 

980B-1H-2, 100-101 2.505 10.62 284 

980B-1H-2, 108-109 2.585 10.81 273 

980B-1H-2, 116-117 2.665 11.00 359 

980B-1H-2, 129-130 2.795 11.31 301 

980B-1H-2, 138-139 2.885 11.52 344 
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980B-1H-2, 144-145 2.945 11.66 288 

 

 

Table 2. Smart et al. 

Rank Species % 

1 Cassidulina obtusa 25.8 

2 Nonionella iridea 8.6 

3 Bolivina difformis 8.0 

4 Trifarina pauperata 7.7 

5 Alabaminella weddellensis 7.0 

6 Stainforthia fusiformis 6.5 

7 Cassidulina laevigata 6.1 

8 Eilohedra vitrea 5.8 

9 Astrononion stelligerum 3.0 

10 Cibicidoides sp. 1 (juvenile) 1.8 
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Table 3. Smart et al. 

  Diversity 
(alpha 
index) 

NPG BFAR Sed. rate 
(cm/kyr) 

% 
Benthics 

% Planktic 
fragments 

% Wt. >63 
µm fraction 

% 
‘Phytodetritus 

species’ 

NPG 
‘Phytodetritus 

species’ 

AR 
‘Phytodetritus 

species’ 

‘High food 
species’ (% 

of total) 

‘High food 
species’ 

(on 
‘phytodetrit
us species’ 
-free basis) 

Diversity 
(alpha 
index) 

r 1 -0.266 -0.583   -0.714   -0.538   -0.196 -0.459   -0.710   -0.417  -0.629   0.039 -0.575   

 p  0.111 <0.001 <0.001 0.001 0.246 0.004 <0.001 0.010 <0.001 0.820 <0.001 

 n 37 37 37 37 37 37 37 37 37 37 37 37 

NPG r -0.266 1 0.872   0.086 0.437   -0.328  0.739   0.356  0.972   0.828   -0.150 0.142 

 p 0.111  <0.001 0.581 0.007 0.047 <0.001 0.031 <0.001 <0.001 0.375 0.402 

 n 37 44 44 44 37 37 44 37 44 44 37 37 

BFAR r -0.583   0.872   1 0.450   0.527   -0.096 0.699   0.559   0.908   0.988   -0.109 0.397  

 p <0.001 <0.001  0.002 0.001 0.570 <0.001 <0.001 <0.001 <0.001 0.520 0.015 

 n 37 44 44 44 37 37 44 37 44 44 37 37 

Sed. rate 
(cm/kyr) 

r -0.714   0.086 0.450   1 0.291 0.444   0.220 0.697   0.212 0.502   -0.246 0.366  

 p <0.001 0.581 0.002  0.080 0.006 0.152 <0.001 0.167 0.001 0.143 0.026 

 n 37 44 44 44 37 37 44 37 44 44 37 37 

% Benthics r -0.538   0.437   0.527   0.291 1 -0.073 0.092 0.337  0.489   0.525   0.088 0.412  

 p 0.001 0.007 0.001 0.080  0.670 0.588 0.041 0.002 0.001 0.606 0.011 

 n 37 37 37 37 37 37 37 37 37 37 37 37 

% Planktic 
fragments 

r -0.196 -0.328  -0.096 0.444   -0.073 1 -0.194 0.308 -0.169 -0.026 -0.358  -0.109 

 p 0.246 0.047 0.570 0.006 0.670  0.249 0.064 0.317 0.880 0.029 0.519 

 n 37 37 37 37 37 37 37 37 37 37 37 37 

% Wt. >63 
µm fraction 

r -0.459   0.739   0.699   0.220 0.092 -0.194 1 0.586   0.720   0.658   -0.273 0.178 

 p 0.004 <0.001 <0.001 0.152 0.588 0.249  <0.001 <0.001 <0.001 0.102 0.293 

 n 37 44 44 44 37 37 44 37 44 44 37 37 

% 
‘Phytodetrit
us species’ 

r -0.710   0.356  0.559   0.697   0.337  0.308 0.586   1 0.561   0.645   -0.542   0.256 

 p <0.001 0.031 <0.001 <0.001 0.041 0.064 <0.001  <0.001 <0.001 0.001 0.127 

 n 37 37 37 37 37 37 37 37 37 37 37 37 

NPG 
‘Phytodetrit
us species’ 

r -0.417  0.972   0.908   0.212 0.489   -0.169 0.720   0.561   1 0.897   -0.268 0.193 
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 p 0.010 <0.001 <0.001 0.167 0.002 0.317 <0.001 <0.001  <0.001 0.109 0.252 

 n 37 44 44 44 37 37 44 37 44 44 37 37 

AR 
‘Phytodetrit
us species’ 

r -0.629   0.828   0.988   0.502   0.525   -0.026 0.658   0.645   0.897   1 -0.163 0.415  

 p <0.001 <0.001 <0.001 0.001 0.001 0.880 <0.001 <0.001 <0.001  0.335 0.011 

 n 37 44 44 44 37 37 44 37 44 44 37 37 

‘High food 
species’ (% 
of total) 

r 0.039 -0.150 -0.109 -0.246 0.088 -0.358  -0.273 -0.542   -0.268 -0.163 1 0.667   

 p 0.820 0.375 0.520 0.143 0.606 0.029 0.102 0.001 0.109 0.335  <0.001 

 n 37 37 37 37 37 37 37 37 37 37 37 37 

‘High food 
species’ (on 
‘phytodetritu
s species’ -
free basis) 

r -0.575   0.142 0.397  0.366  0.412  -0.109 0.178 0.256 0.193 0.415  0.667   1 

 p <0.001 0.402 0.015 0.026 0.011 0.519 0.293 0.127 0.252 0.011 <0.001  

 n 37 37 37 37 37 37 37 37 37 37 37 37 

 

In bold: correlation is significant at the 0.01 level (2-tailed). 

 

Table 4. Smart et al. 

  % B. difformis % E. vitrea % A. weddellensis % C. obtusa % N.iridea NPG Benthics (on 
‘phytodetritus 
species’ -free 

basis) 

AR Benthics (on 
‘phytodetritus 
species’ -free 

basis) 

Diversity 
(alpha index) 

r -0.421   -0.179 0.131 -0.592   -0.526   -0.110 -0.520   

 p 0.009 0.288 0.441 <0.001 0.001 0.516 0.001 

 n 37 37 37 37 37 37 37 

NPG r -0.017 0.062 0.185 0.046 0.514   0.980   0.894   

 p 0.919 0.717 0.272 0.788 0.001 <0.001 <0.001 

 n 37 37 37 37 37 44 44 

BFAR r 0.169 0.005 0.117 0.246 0.637   0.802   0.989   

 p 0.317 0.978 0.492 0.142 <0.001 <0.001 <0.001 

 n 37 37 37 37 37 44 44 
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Sed. rate 
(cm/kyr) 

r 0.221 0.084 -0.034 0.668   0.330  -0.027 0.392   

 p 0.189 0.623 0.843 <0.001 0.046 0.860 0.009 

 n 37 37 37 37 37 44 44 

% Benthics r 0.346  0.091 -0.299 0.139 0.617   0.360  0.515   

 p 0.036 0.591 0.072 0.413 <0.001 0.029 0.001 

 n 37 37 37 37 37 37 37 

% Planktic 
fragments 

r 0.297 0.433   -0.318 0.558   -0.099 -0.453   -0.164 

 p 0.074 0.007 0.055 <0.001 0.560 0.005 0.332 

 n 37 37 37 37 37 37 37 

% Wt. >63 µm 
fraction 

r -0.060 0.040 0.101 0.423   0.402  0.723   0.722   

 p 0.723 0.815 0.553 0.009 0.014 <0.001 <0.001 

 n 37 37 37 37 37 44 44 

% 
‘Phytodetritus 
species’ 

r 0.067 0.249 0.076 0.846   0.569   0.144 0.457   

 p 0.692 0.137 0.656 <0.001 <0.001 0.394 0.004 

 n 37 37 37 37 37 37 37 

NPG 
‘Phytodetritus 
species’ 

r 0.055 0.114 0.150 0.249 0.612   0.906   0.899   

 p 0.746 0.500 0.376 0.137 <0.001 <0.001 <0.001 

 n 37 37 37 37 37 44 44 

AR 
‘Phytodetritus 
species’ 

r 0.175 0.009 0.123 0.334  0.663   0.732   0.955   

 p 0.299 0.959 0.469 0.043 <0.001 <0.001 <0.001 

 n 37 37 37 37 37 44 44 

‘High food 
species’ (% of 
total) 

r 0.347  -0.575   0.061 -0.595   -0.151 -0.032 -0.053 

 p 0.035 <0.001 0.719 <0.001 0.372 0.850 0.757 

 n 37 37 37 37 37 37 37 

‘High food 
species’ (on 
‘phytodetritus 
species’ -free 
basis) 

r 0.461   -0.465   0.133 0.071 0.312 0.086 0.369  

 p 0.004 0.004 0.431 0.675 0.060 0.613 0.025 

 n 37 37 37 37 37 37 37 
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% B. difformis r 1 0.167 -0.402  0.109 0.192 -0.083 0.158 

 p  0.324 0.014 0.522 0.256 0.627 0.350 

 n 37 37 37 37 37 37 37 

% E. vitrea r 0.167 1 -0.272 0.348  0.102 0.009 0.001 

 p 0.324  0.103 0.035 0.548 0.957 0.997 

 n 37 37 37 37 37 37 37 

% A. 
weddellensis 

r -0.402  -0.272 1 -0.127 -0.204 0.206 0.107 

 p 0.014 0.103  0.452 0.226 0.222 0.527 

 n 37 37 37 37 37 37 37 

% C. obtusa r 0.109 0.348  -0.127 1 0.140 -0.144 0.152 

 p 0.522 0.035 0.452  0.410 0.394 0.369 

 n 37 37 37 37 37 37 37 

% N.iridea r 0.192 0.102 -0.204 0.140 1 0.391  0.593   

 p 0.256 0.548 0.226 0.410  0.017 <0.001 

 n 37 37 37 37 37 37 37 

NPG Benthics 
(on 
‘phytodetritus 
species’ -free 
basis) 

r -0.083 0.009 0.206 -0.144 0.391  1 0.850   

 p 0.627 0.957 0.222 0.394 0.017  <0.001 

 n 37 37 37 37 37 44 44 

AR Benthics 
(on 
‘phytodetritus 
species’ -free 
basis 

r 0.158 0.001 0.107 0.152 0.593   0.850   1 

 p 0.350 0.997 0.527 0.369 <0.001 <0.001  

 n 37 37 37 37 37 44 44 

 

In bold: correlation is significant at the 0.01 level (2-tailed). 

 

 


