419 research outputs found

    Joint profiling of DNA methylation and chromatin architecture in single cells.

    Get PDF
    We report a molecular assay, Methyl-HiC, that can simultaneously capture the chromosome conformation and DNA methylome in a cell. Methyl-HiC reveals coordinated DNA methylation status between distal genomic segments that are in spatial proximity in the nucleus, and delineates heterogeneity of both the chromatin architecture and DNA methylome in a mixed population. It enables simultaneous characterization of cell-type-specific chromatin organization and epigenome in complex tissues

    Widespread recovery of methylation at gametic imprints in hypomethylated mouse stem cells following rescue with DNMT3A2

    Get PDF
    BACKGROUND: Imprinted loci are paradigms of epigenetic regulation and are associated with a number of genetic disorders in human. A key characteristic of imprints is the presence of a gametic differentially methylated region (gDMR). Previous studies have indicated that DNA methylation lost from gDMRs could not be restored by DNMT1, or the de novo enzymes DNMT3A or 3B in stem cells, indicating that imprinted regions must instead undergo passage through the germline for reprogramming. However, previous studies were non-quantitative, were unclear on the requirement for DNMT3A/B and showed some inconsistencies. In addition, new putative gDMR has recently been described, along with an improved delineation of the existing gDMR locations. We therefore aimed to re-examine the dependence of methylation at gDMRs on the activities of the methyltransferases in mouse embryonic stem cells (ESCs). RESULTS: We examined the most complete current set of imprinted gDMRs that could be assessed using quantitative pyrosequencing assays in two types of ESCs: those lacking DNMT1 (1KO) and cells lacking a combination of DNMT3A and DNMT3B (3abKO). We further verified results using clonal analysis and combined bisulfite and restriction analysis. Our results showed that loss of methylation was approximately equivalent in both cell types. 1KO cells rescued with a cDNA-expressing DNMT1 could not restore methylation at the imprinted gDMRs, confirming some previous observations. However, nearly all gDMRs were remethylated in 3abKO cells rescued with a DNMT3A2 expression construct (3abKO + 3a2). Transcriptional activity at the H19/Igf2 locus also tracked with the methylation pattern, confirming functional reprogramming in the latter. CONCLUSIONS: These results suggested (1) a vital role for DNMT3A/B in methylation maintenance at imprints, (2) that loss of DNMT1 and DNMT3A/B had equivalent effects, (3) that rescue with DNMT3A2 can restore imprints in these cells. This may provide a useful system in which to explore factors influencing imprint reprogramming. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13072-016-0104-2) contains supplementary material, which is available to authorized users

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Photo-enhanced antinodal conductivity in the pseudogap state of high-T-c cuprates

    Get PDF
    A major challenge in understanding the cuprate superconductors is to clarify the nature of the fundamental electronic correlations that lead to the pseudogap phenomenon. Here we use ultrashort light pulses to prepare a non-thermal distribution of excitations and capture novel properties that are hidden at equilibrium. Using a broadband (0.5-2 eV) probe, we are able to track the dynamics of the dielectric function and unveil an anomalous decrease in the scattering rate of the charge carriers in a pseudogap-like region of the temperature (T) and hole-doping (p) phase diagram. In this region, delimited by a well-defined T*(neq)(p) line, the photoexcitation process triggers the evolution of antinodal excitations from gapped (localized) to delocalized quasiparticles characterized by a longer lifetime. The novel concept of photo-enhanced antinodal conductivity is naturally explained within the singleband Hubbard model, in which the short-range Coulomb repulsion leads to a k-space differentiation between nodal quasiparticles and antinodal excitations. \ua9 2014 Macmillan Publishers Limited. All rights reserved

    DNA methylation dynamics of the human preimplantation embryo

    Get PDF
    In mammals, cytosine methylation is predominantly restricted to CpG dinucleotides and stably distributed across the genome, with local, cell type-specific regulation directed by DNA binding factors1-3. This comparatively static landscape dramatically contrasts the events of fertilization, where the paternal genome is globally reprogrammed. Paternal genome demethylation includes the majority of CpGs, though methylation is maintained at several notable features4-7. While these dynamics have been extensively characterized in the mouse, only limited observations are available in other mammals, and direct measurements are required to understand the extent to which early embryonic landscapes are conserved8-10. We present genome-scale DNA methylation maps of human preimplantation development and embryonic stem cell (ESC) derivation, confirming a transient state of global hypomethylation that includes most CpGs, while sites of persistent maintenance are primarily restricted to gene bodies. While most features share similar dynamics to mouse, maternally contributed methylation is divergently targeted to species-specific sets of CpG island (CGI) promoters that extend beyond known Imprint Control Regions (ICRs). Retrotransposon regulation is also highly diverse and transitions from maternally to embryonically expressed, species-specific elements. Together, our data confirm that paternal genome demethylation is a general attribute of early mammalian development that is characterized by distinct modes of epigenetic regulation

    Cell-Specific DNA Methylation Patterns of Retina-Specific Genes

    Get PDF
    Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS) of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO), retinal binding protein 3 (RBP3, IRBP) cone opsin, short-wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone opsin, long-wave-sensitive (OPN1LW) was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl −/− mouse and Opn1sw in rods). These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA methylation that correlates inversely with their expression level. Furthermore, these cell-specific patterns suggest that DNA methylation may play an important role in modulating photoreceptor gene expression in the developing mammalian retina

    Diabetes and hypertension increase the placental and transcellular permeation of the lipophilic drug diazepam in pregnant women

    Get PDF
    Background: Previous studies carried out in our laboratories have demonstrated impaired drug permeation in diabetic animals. In this study the permeation of diazepam (after a single dose of 5 mg/day, administered intramuscularly) will be investigated in diabetic and hypertensive pregnant women.Methods: A total 75 pregnant women were divided into three groups: group 1 (healthy control, n = 31), group 2 (diabetic, n = 14) and group 3 (hypertensive, n = 30). Two sets of diazepam plasma concentrations were collected and measured (after the administration of the same dose of diazepam), before, during and after delivery. The first set of blood samples was taken from the mother (maternal venous plasma). The second set of samples was taken from the fetus (fetal umbilical venous and arterial plasma). In order to assess the effect of diabetes and hypertension on diazepam placental-permeation, the ratios of fetal to maternal blood concentrations were determined. Differences were considered statistically significant if p=0.05.Results: The diabetes and hypertension groups have 2-fold increase in the fetal umbilical-venous concentrations, compared to the maternal venous concentrations. Feto: maternal plasma-concentrations ratios were higher in diabetes (2.01 ± 1.10) and hypertension (2.26 ± 1.23) groups compared with control (1.30 ± 0.48) while, there was no difference in ratios between the diabetes and hypertension groups. Umbilical-cord arterial: venous ratios (within each group) were similar among all groups (control: 0.97 ± 0.32; hypertension: 1.08 ± 0.60 and diabetes: 1.02 ± 0.77).Conclusions: On line with our previous findings which demonstrate disturbed transcellular trafficking of lipophilic drugs in diabetes, this study shows significant increase in diazepam placental-permeation in diabetic and hypertensive pregnant women suggesting poor transcellular control of drug permeation and flux, and bigger exposure of the fetus to drug-placental transport

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 96 (FGE.96): Consideration of 88 flavouring substances considered by EFSA for which EU production volumes / anticipated production volumes have been submitted on request by DG SANCO. Addendum to FGE. 51, 52, 53, 54, 56, 58, 61, 62, 63, 64, 68, 69, 70, 71, 73, 76, 77, 79, 80, 83, 84, 85 and 87

    Get PDF
    Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism1. To identify new causes of human overgrowth, we performed exome sequencing in ten proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations by sequencing DNMT3A in a further 142 individuals with overgrowth. The mutations alter residues in functional DNMT3A domains, and protein modeling suggests that they interfere with domain-domain interactions and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P < 0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia2, 3, 4. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancie

    An Estimate of Avian Mortality at Communication Towers in the United States and Canada

    Get PDF
    Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action
    corecore