62 research outputs found
Development and validation of computational models of cellular interaction
In this paper we take the view that computational models of biological systems should satisfy two conditions –
they should be able to predict function at a systems biology level, and robust techniques of validation against
biological models must be available. A modelling paradigm for developing a predictive computational model of
cellular interaction is described, and methods of providing robust validation against biological models are
explored, followed by a consideration of software issues
Agent-based computational modeling of wounded epithelial cell monolayers
Computational modeling of biological systems, or ‘in silico biology’ is an emerging tool for understanding structure and order in biological tissues. Computational models of the behavior of epithelial cells in monolayer cell culture have been developed and used to predict the healing characteristics of scratch wounds made to urothelial cell cultures maintained in low and physiological [Ca2+] environments. Both computational models and in vitro experiments demonstrated that in low exogenous [Ca2+], the closure of 500mm scratch wounds was achieved primarily by cell migration into the denuded area. The wound healing rate in low (0.09mM) [Ca2+] was approximately twice as rapid as in physiological (2mM) [Ca2+]. Computational modeling predicted that in cell cultures that are actively proliferating, no increase in the fraction of cells in S-phase would be expected, and this conclusion was supported experimentally in vitro by BrdU incorporation assay. We have demonstrated that a simple rule-based model of cell behavior, incorporating rules relating to contact inhibition of proliferation and migration, is sufficient to qualitatively predict the calcium-dependent pattern of wound closure observed in vitro. Differences between the in vitro and in silico models suggest a role for wound-induced signaling events in urothelial cell cultures
The Epitheliome: agent-based modelling of the social behaviour of cells
We have developed a new computational modelling paradigm for predicting the emergent behaviour
resulting from the interaction of cells in epithelial tissue. As proof-of-concept, an agent-based model,
in which there is a one-to-one correspondence between biological cells and software agents, has been
coupled to a simple physical model. Behaviour of the computational model is compared with the
growth characteristics of epithelial cells in monolayer culture, using growth media with low and
physiological calcium concentrations. Results show a qualitative fit between the growth characteristics
produced by the simulation and the in vitro cell models
Non-linear instability of Kerr-type Cauchy horizons
Using the general solution to the Einstein equations on intersecting null
surfaces developed by Hayward, we investigate the non-linear instability of the
Cauchy horizon inside a realistic black hole. Making a minimal assumption about
the free gravitational data allows us to solve the field equations along a null
surface crossing the Cauchy Horizon. As in the spherical case, the results
indicate that a diverging influx of gravitational energy, in concert with an
outflux across the CH, is responsible for the singularity. The spacetime is
asymptotically Petrov type N, the same algebraic type as a gravitational shock
wave. Implications for the continuation of spacetime through the singularity
are briefly discussed.Comment: 11 pages RevTeX, two postscript figures included using epsf.st
DP2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment
Increased airway smooth muscle mass, a feature of airway remodeling in asthma, is the strongest predictor of airflow limitation and contributes to asthma-associated morbidity and mortality. No current drug therapy for asthma is known to affect airway smooth muscle mass. Although there is increasing evidence that prostaglandin D2 type 2 receptor (DP2) is expressed in airway structural and inflammatory cells, few studies have addressed the expression and function of DP2 in airway smooth muscle cells. We report that the DP2 antagonist fevipiprant reduced airway smooth muscle mass in bronchial biopsies from patients with asthma who had participated in a previous randomized placebo-controlled trial. We developed a computational model to capture airway remodeling. Our model predicted that a reduction in airway eosinophilia alone was insufficient to explain the clinically observed decrease in airway smooth muscle mass without a concomitant reduction in the recruitment of airway smooth muscle cells or their precursors to airway smooth muscle bundles that comprise the airway smooth muscle layer. We experimentally confirmed that airway smooth muscle migration could be inhibited in vitro using DP2-specific antagonists in an airway smooth muscle cell culture model. Our analyses suggest that fevipiprant, through antagonism of DP2, reduced airway smooth muscle mass in patients with asthma by decreasing airway eosinophilia in concert with reduced recruitment of myofibroblasts and fibrocytes to the airway smooth muscle bundle. Fevipiprant may thus represent a potential therapy to ameliorate airway remodeling in asthma
Helium identification with LHCb
The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei
Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector
Flow harmonic coefficients,
v
n
, which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02
TeV
. The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features
Curvature-bias corrections using a pseudomass method
Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→μ + μ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→μ + μ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass
Study of CP violation in B0 → DK⋆(892)0 decays with D → Kπ(ππ), ππ(ππ), and KK final states
A measurement of CP-violating observables associated with the interference
of B0 → D0K⋆
(892)0 and B0 → D¯ 0K⋆
(892)0 decay amplitudes is performed in the
D0 → K∓π
±(π
+π
−), D0 → π
+π
−(π
+π
−), and D0 → K+K− fnal states using data collected
by the LHCb experiment corresponding to an integrated luminosity of 9 fb−1
. CP-violating
observables related to the interference of B0
s → D0K¯ ⋆
(892)0 and B0
s → D¯ 0K¯ ⋆
(892)0 are also
measured, but no evidence for interference is found. The B0 observables are used to constrain
the parameter space of the CKM angle γ and the hadronic parameters r
DK⋆
B0 and δ
DK⋆
B0 with
inputs from other measurements. In a combined analysis, these measurements allow for four
solutions in the parameter space, only one of which is consistent with the world average
Study of the doubly charmed tetraquark T+cc
Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed
- …